Foliations with complex leaves
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 2, pp. 115-120.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let \( X \) be a smooth foliation with complex leaves and let \( \mathcal{D} \) be the sheaf of germs of smooth functions, holomorphic along the leaves. We study the ringed space \( (X, \mathcal{D}) \). In particular we concentrate on the following two themes: function theory for the algebra \( \mathcal{D}(X) \) and cohomology with values in \( \mathcal{D} \).
Sia \( X \) una varietà differenziabile fogliata con foglie complesse e sia \( \mathcal{D} \) il fascio dei germi delle funzioni differenziabili su \( X \), olomorfe lungo le foglie. Si studia lo spazio anellato \( (X, \mathcal{D}) \); in particolare la teoria delle funzioni per l'algebra \( \mathcal{D}(X) \) e la coomologia a valori in \( \mathcal{D} \).
@article{RLIN_1993_9_4_2_a5,
     author = {Gigante, Giuliana and Tomassini, Giuseppe},
     title = {Foliations with complex leaves},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {115--120},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {2},
     year = {1993},
     zbl = {0784.32027},
     mrnumber = {150342},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_2_a5/}
}
TY  - JOUR
AU  - Gigante, Giuliana
AU  - Tomassini, Giuseppe
TI  - Foliations with complex leaves
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1993
SP  - 115
EP  - 120
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_2_a5/
LA  - en
ID  - RLIN_1993_9_4_2_a5
ER  - 
%0 Journal Article
%A Gigante, Giuliana
%A Tomassini, Giuseppe
%T Foliations with complex leaves
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1993
%P 115-120
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_2_a5/
%G en
%F RLIN_1993_9_4_2_a5
Gigante, Giuliana; Tomassini, Giuseppe. Foliations with complex leaves. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 2, pp. 115-120. http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_2_a5/

[1] A. Andreotti - H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 90, 1962, 193-259. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[2] A. Andreotti - M. Nacinovich, Analytic Convexity. Ann. Scuola Norm. Sup. Pisa, 7, 1980, 287-372. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[3] J. Chaumat - A. M. Chollet, Noyaux pour résoudre l'équation \( \bar{\partial} \) dans des classes ultradifférentiables sur des compacts irréguliers de \( \mathbb{C}^{n} \). Preprint.

[4] M. Freeman, Local complex foliations of real submanifolds. Math. Ann., 209, 1970, 1-30. | fulltext EuDML | MR | Zbl

[5] M. Freeman, Tangential Cauchy-Riemann equations and uniform approximation. Pacific J. Math., 33, N. 1, 1970, 101-108. | fulltext mini-dml | MR | Zbl

[6] R. Gay - A. Sebbar, Division et extension dans l'algèbre \( A^{\infty}(\Omega) \) d'un ouvert pseudo-convex à bord lisse de \( \mathbb{C}^{n} \). Math. Z., 189, 1985, 421-447. | fulltext EuDML | DOI | MR | Zbl

[7] L. Hörmander, An Introduction to Complex Analysis in Several Variables. North-Holland 1973. | MR | Zbl

[8] S. Kobayashi, Intrinsic distances, measures and geometric function theory. Bull. Am. Math. Soc., 82, 1976, 357-416. | fulltext mini-dml | MR | Zbl

[9] J. J. Kohn, Global regularity for \( \bar{\partial} \) on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc., 181, 1973, 273-292. | MR | Zbl

[10] L. Nirenberg, A Proof of the Malgrange Preparation Theorem. Proceedings of Liverpool Singularities, I. Lecture notes in mathematics, 192, Springer-Verlag, New York 1971, 97-105. | MR | Zbl

[11] C. Rea, Levi flat submanifolds and biholomorphic extension of foliations. Ann. Scuola Norm. Sup. Pisa, 26, 1972, 664-681. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[12] N. Sibony, A class of hyperbolic manifolds. Recent developments in several complex variables. Ann. of Math. Stud., Princeton Univ. Press, N. 100, 1981. | MR | Zbl

[13] F. Sommer, Komplexe analytische Blätterung reeler Mannigfaltigkeiten in \( \mathbb{C}^{n} \). Math. Ann., 136, 1958, 111-133. | fulltext EuDML | MR | Zbl

[14] G. Tomassini, Extension d'objects CR. Math. Z., 194, 1987, 471-486. | fulltext EuDML | DOI | MR | Zbl