New classes of analytic and Gevrey semigroups and applications
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 1, pp. 29-34.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the operator \( -A + iB \) on a complex Hilbert space, where \( A \) is positive self-adjoint and \( B \) is self-adjoint, and where, moreover, «\( B \) is comparable to \( A^{\alpha} \), \( \alpha \ge 1 \)», in a technical sense. Two applications are given.
Si considera l'operatore \( -A + iB \) in uno spazio di Hilbert complesso, dove \( A \) è autoaggiunto positivo e \( B \) è autoaggiunto, con «\( B \) comparabile con \( A^{\alpha} \), \( \alpha \ge 1 \)». Vengono date due applicazioni.
@article{RLIN_1993_9_4_1_a1,
     author = {Favini, Angelo and Triggiani, Roberto},
     title = {New classes of analytic and {Gevrey} semigroups and applications},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {29--34},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {1},
     year = {1993},
     zbl = {0805.47033},
     mrnumber = {996678},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_1_a1/}
}
TY  - JOUR
AU  - Favini, Angelo
AU  - Triggiani, Roberto
TI  - New classes of analytic and Gevrey semigroups and applications
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1993
SP  - 29
EP  - 34
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_1_a1/
LA  - en
ID  - RLIN_1993_9_4_1_a1
ER  - 
%0 Journal Article
%A Favini, Angelo
%A Triggiani, Roberto
%T New classes of analytic and Gevrey semigroups and applications
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1993
%P 29-34
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_1_a1/
%G en
%F RLIN_1993_9_4_1_a1
Favini, Angelo; Triggiani, Roberto. New classes of analytic and Gevrey semigroups and applications. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 1, pp. 29-34. http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_1_a1/

[1] S. Chen - R. Triggiani, Proof of two conjectures by G. Chen and D. L. Russell on structural damping for elastic systems. Proceedings of Conference on Approximation and Optimization held at the University of Havana (Cuba, January 1987). Lecture notes in mathematics, n. 1354, Springer-Verlag, 1988, 234-256. | DOI | MR | Zbl

[2] A. Favini - A. Yagi, Multivalued linear operator and degenerate evolution equations. Ann. Mat. Pura Appl., to appear. | DOI | MR | Zbl

[3] F. Flandoli - I. Lasiecka - R. Triggiani, Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bemoulli equations. Ann. Mat. Pura Appl., vol. 153, 1988, 307-382. | DOI | MR | Zbl

[4] T. Kato, Perturbation theory for linear operators. Springer-Verlag, 1966. | MR | Zbl

[5] S. G. Krein, Linear differential equations in Banach space. Translations of Math. Monographs, American Math. Soc., vol. 29, 1971. | MR | Zbl

[6] I. Lasiecka - R. Triggiani, Riccati equations arising from systems with unbounded input-solution operator: applications to boundary control problems for wave and plate problems. J. of Nonlinear Analysis, to appear. | Zbl

[7] A. Pazy, Semigroups of operators and applications to partial differential equations. Springer-Verlag, New York 1983. | DOI | MR | Zbl

[8] K. Taira, The theory of semigroups with weak singularity and its applications to partial differential equations. Tsakuba J. Math., 13, 1989, 513-562. | MR | Zbl

[9] S. Taylor, Gevrey class semigroups. Ph. D. thesis, School of Mathematics, University of Minnesota, 1989, Chapter 1.