Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1992_9_3_4_a2, author = {Prouse, Giovanni}, title = {A uniqueness theorem for the approximable solutions of the stationary {Navier-Stokes} equations}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {261--269}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {4}, year = {1992}, zbl = {0773.35051}, mrnumber = {769654}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a2/} }
TY - JOUR AU - Prouse, Giovanni TI - A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1992 SP - 261 EP - 269 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a2/ LA - en ID - RLIN_1992_9_3_4_a2 ER -
%0 Journal Article %A Prouse, Giovanni %T A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1992 %P 261-269 %V 3 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a2/ %G en %F RLIN_1992_9_3_4_a2
Prouse, Giovanni. A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 4, pp. 261-269. http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a2/
[1] Navier-Stokes equations. North Holland, 1977. | MR | Zbl
,[2] The mathematical theory of viscous, incompressible fluids. Gordon and Breach, 1969. | MR | Zbl
,[3] Finite dimensional approximation of nonlinear problems. Num. Math., 36, 1980, 1-25. | fulltext EuDML | DOI | MR | Zbl
- - ,[4] On modifications of the Navier-Stokes equations for large velocity gradients. Sem. Inst. Steklov, Leningrad 1968 (in russian). | Zbl
,[5] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969. | MR | Zbl
,