A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 4, pp. 261-269 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

It is proved that there can exist at most one solution of the homogeneous Dirichlet problem for the stationary Navier-Stokes equations in 3-dimensional space which is approximable by a given consistent and regular approximation scheme.
@article{RLIN_1992_9_3_4_a2,
     author = {Prouse, Giovanni},
     title = {A uniqueness theorem for the approximable solutions of the stationary {Navier-Stokes} equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {261--269},
     year = {1992},
     volume = {Ser. 9, 3},
     number = {4},
     zbl = {0773.35051},
     mrnumber = {MR1203166},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a2/}
}
TY  - JOUR
AU  - Prouse, Giovanni
TI  - A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1992
SP  - 261
EP  - 269
VL  - 3
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a2/
LA  - en
ID  - RLIN_1992_9_3_4_a2
ER  - 
%0 Journal Article
%A Prouse, Giovanni
%T A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1992
%P 261-269
%V 3
%N 4
%U http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a2/
%G en
%F RLIN_1992_9_3_4_a2
Prouse, Giovanni. A uniqueness theorem for the approximable solutions of the stationary Navier-Stokes equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 4, pp. 261-269. http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a2/