Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1992_9_3_4_a0, author = {Meisner, David Benjamin}, title = {On a construction of regular {Hadamard} matrices}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {233--240}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {4}, year = {1992}, zbl = {0776.05027}, mrnumber = {779284}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a0/} }
TY - JOUR AU - Meisner, David Benjamin TI - On a construction of regular Hadamard matrices JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1992 SP - 233 EP - 240 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a0/ LA - en ID - RLIN_1992_9_3_4_a0 ER -
%0 Journal Article %A Meisner, David Benjamin %T On a construction of regular Hadamard matrices %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1992 %P 233-240 %V 3 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a0/ %G en %F RLIN_1992_9_3_4_a0
Meisner, David Benjamin. On a construction of regular Hadamard matrices. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 4, pp. 233-240. http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_4_a0/
[1] Design Theory. Bibliographisches Institut, Mannheim 1985. | MR | Zbl
- - ,[2] On Designs Constructed from Hadamard Matrices. Proc. London Math. Soc. (3), 49, 1984, 9-21. | DOI | MR | Zbl
- ,[3] Symmetric Designs: An Algebraic Approach. London Math. Soc. Lecture Notes 72, Cambridge University Press, Cambridge 1983. | DOI | MR | Zbl
,[4] On Difference Sets whose Parameters Satisfy a Certain Relation. Proc. American Math. Soc, 13, 1962, 739-745. | MR | Zbl
,[5] SBIBD \( (4k^{2}, 2k^{2} + k, k^{2} + k) \) and Hadamard Matrices of order \( 4k^{2} \) with Maximal Excess are Equivalent. Graphs Combin., 5, 1989, 373-383. | DOI | MR | Zbl
,[6] A New Class of Symmetric Block Designs. J. Comb. Th., 6, 1969, 219-221. | MR | Zbl
,[7] Combinatorics: Room Squares, Sum Free Sets, Hadamard Matrices. Springer-Verlag, Berlin-Heidelberg-New York 1972. | MR
- - ,