Some properties of collision and non-collision orbits for a class of singular dynamical systems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 3, pp. 217-222.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present some regularity properties of periodic solutions to a class of singular potential problems and we discuss the existence of a regular solution.
Si presentano alcune proprietà di regolarità delle soluzioni periodiche di una classe di sistemi dinamici con potenziale singolare e si prova l'esistenza di una soluzione regolare.
@article{RLIN_1992_9_3_3_a6,
     author = {Coti Zelati, Vittorio and Serra, Enrico},
     title = {Some properties of collision and non-collision orbits for a class of singular dynamical systems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {217--222},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {1992},
     zbl = {0768.34024},
     mrnumber = {997224},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a6/}
}
TY  - JOUR
AU  - Coti Zelati, Vittorio
AU  - Serra, Enrico
TI  - Some properties of collision and non-collision orbits for a class of singular dynamical systems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1992
SP  - 217
EP  - 222
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a6/
LA  - en
ID  - RLIN_1992_9_3_3_a6
ER  - 
%0 Journal Article
%A Coti Zelati, Vittorio
%A Serra, Enrico
%T Some properties of collision and non-collision orbits for a class of singular dynamical systems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1992
%P 217-222
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a6/
%G en
%F RLIN_1992_9_3_3_a6
Coti Zelati, Vittorio; Serra, Enrico. Some properties of collision and non-collision orbits for a class of singular dynamical systems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 3, pp. 217-222. http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a6/

[1] A. Ambrosetti - V. Coti Zelati, Perturbations of Hamiltonian systems with Keplerian potentials. Math. Z., 201, 1989, 227-242. | fulltext EuDML | DOI | MR | Zbl

[2] A. Bahri - P. L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results. Comm. Pure Appl. Math., 41, 1988, 1027-1037. | DOI | MR | Zbl

[3] A. Bahri - P. H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal., 82, 1989, 412-428. | DOI | MR | Zbl

[4] V. Coti Zelati, Periodic solutions for a class of planar, singular dynamical systems. J. Math. Pures Appl., (9) 68, 1989, 109-119. | MR | Zbl

[5] V. Coti Zelati - E. Serra, Collision and non collision solutions for a class of Keplerian like dynamical Systems. Preprint SISSA (Trieste), 1991. | DOI | MR | Zbl

[6] M. Degiovanni - F. Giannoni, Periodic solutions of dynamical systems with Newtonian-type potentials. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 1989, 467-494. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[7] E. Serra - S. Terracini, Noncollision solutions to some singular minimization problems with Keplerian-like potentials. Nonlinear Anal. TMA, to appear. | DOI | MR | Zbl

[8] S. Solimini, Morse index estimates in min-max theorems. Manuscripta Math., 63, 1989, 421-453. | fulltext EuDML | DOI | MR | Zbl

[9] K. Tanaka, Morse index at critical points related to the symmetric mountain pass theorem and applications. Commun. in Partial Diff. Eq., 14, 1989, 119-128. | DOI | MR | Zbl

[10] K. Tanaka, Non-collisions for a second order singular Hamiltonian system with weak force. Preprint, Nagoya University, Japan, 1991. | MR

[11] S. Terracini, An homotopical index and multeplicity of periodic solutions to dynamical systems with singular potentials. J. Diff. Eq., to appear. | DOI | MR | Zbl

[12] C. Viterbo, Indice de Morse des points critiques obtenus par minimax. Ann. Inst. H. Poincaré, Analyse non linéaire, 3, 1988, 221-225. | fulltext EuDML | fulltext mini-dml | MR | Zbl