Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1992_9_3_3_a6, author = {Coti Zelati, Vittorio and Serra, Enrico}, title = {Some properties of collision and non-collision orbits for a class of singular dynamical systems}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {217--222}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {3}, year = {1992}, zbl = {0768.34024}, mrnumber = {997224}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a6/} }
TY - JOUR AU - Coti Zelati, Vittorio AU - Serra, Enrico TI - Some properties of collision and non-collision orbits for a class of singular dynamical systems JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1992 SP - 217 EP - 222 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a6/ LA - en ID - RLIN_1992_9_3_3_a6 ER -
%0 Journal Article %A Coti Zelati, Vittorio %A Serra, Enrico %T Some properties of collision and non-collision orbits for a class of singular dynamical systems %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1992 %P 217-222 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a6/ %G en %F RLIN_1992_9_3_3_a6
Coti Zelati, Vittorio; Serra, Enrico. Some properties of collision and non-collision orbits for a class of singular dynamical systems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 3, pp. 217-222. http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a6/
[1] Perturbations of Hamiltonian systems with Keplerian potentials. Math. Z., 201, 1989, 227-242. | fulltext EuDML | DOI | MR | Zbl
- ,[2] Morse index of some min-max critical points. I. Application to multiplicity results. Comm. Pure Appl. Math., 41, 1988, 1027-1037. | DOI | MR | Zbl
- ,[3] A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal., 82, 1989, 412-428. | DOI | MR | Zbl
- ,[4] Periodic solutions for a class of planar, singular dynamical systems. J. Math. Pures Appl., (9) 68, 1989, 109-119. | MR | Zbl
,[5] Collision and non collision solutions for a class of Keplerian like dynamical Systems. Preprint SISSA (Trieste), 1991. | DOI | MR | Zbl
- ,[6] Periodic solutions of dynamical systems with Newtonian-type potentials. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 1989, 467-494. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[7] Noncollision solutions to some singular minimization problems with Keplerian-like potentials. Nonlinear Anal. TMA, to appear. | DOI | MR | Zbl
- ,[8] Morse index estimates in min-max theorems. Manuscripta Math., 63, 1989, 421-453. | fulltext EuDML | DOI | MR | Zbl
,[9] Morse index at critical points related to the symmetric mountain pass theorem and applications. Commun. in Partial Diff. Eq., 14, 1989, 119-128. | DOI | MR | Zbl
,[10] Non-collisions for a second order singular Hamiltonian system with weak force. Preprint, Nagoya University, Japan, 1991. | MR
,[11] An homotopical index and multeplicity of periodic solutions to dynamical systems with singular potentials. J. Diff. Eq., to appear. | DOI | MR | Zbl
,[12] Indice de Morse des points critiques obtenus par minimax. Ann. Inst. H. Poincaré, Analyse non linéaire, 3, 1988, 221-225. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,