Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1992_9_3_2_a4, author = {Salvatore, Addolorata}, title = {Multiple periodic solutions for {Hamiltonian} systems with singular potential}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {111--119}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {2}, year = {1992}, zbl = {0763.34034}, mrnumber = {932787}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_2_a4/} }
TY - JOUR AU - Salvatore, Addolorata TI - Multiple periodic solutions for Hamiltonian systems with singular potential JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1992 SP - 111 EP - 119 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_2_a4/ LA - en ID - RLIN_1992_9_3_2_a4 ER -
%0 Journal Article %A Salvatore, Addolorata %T Multiple periodic solutions for Hamiltonian systems with singular potential %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1992 %P 111-119 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_2_a4/ %G en %F RLIN_1992_9_3_2_a4
Salvatore, Addolorata. Multiple periodic solutions for Hamiltonian systems with singular potential. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 2, pp. 111-119. http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_2_a4/
[1] Critical points with lack of compactness and singular dynamical systems. Ann. Mat. Pura e Appl., 149, 1987, 237-259. | DOI | MR | Zbl
- ,[2] Non collision orbits for a class of Keplerian-like potentials. Ann. Inst. H. Poincaré, 5, 1988, 287-295. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[3] A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal., 82, 1989, 412-428. | DOI | MR | Zbl
- ,[4] A new approach to the Morse-Conley theory. In: G. F. DELL' ANTONIO - B. D'ONOFRIO (eds.), Proceedings on Recent advances in Hamiltonian systems. World Scientific, Singapore 1987, 83-96. | MR | Zbl
,[5] Closed geodesics on non compact Riemannian manifolds. Compt. Rend. Acad. Sc. Paris, 312, I, 1991, 857-861. | MR | Zbl
- ,[6] On the closed geodesics on non compact Riemannian manifolds. Preprint.
- ,[7] Periodic solutions of Lagrangian systems with bounded potential. J. Math. Anal. Appl., 124, 1987, 482-494. | DOI | MR | Zbl
- - ,[8] Lagrangian systems in the presence of singularities. Proc. Amer. Math. Soc., 102, 1988, 125-130. | DOI | MR | Zbl
- - ,[9] Periodic solutions of dynamical systems with Newtonian type potentials. Ann. Scuola Norm. Sup. Pisa, 15, 1988, 467-494. | fulltext EuDML | fulltext mini-dml | Zbl
- ,[10] Dynamical systems with Newtonian type potentials. Atti Acc. Lincei Rend. fis., s. 8, 81, 1987, 271-278. | MR | Zbl
- - ,[11] Geodesics on non static Lorentz manifolds of Reissner-Nordstrôm type. Math. Annalen., 291, 1991, 383-401. | fulltext EuDML | DOI | MR | Zbl
,[12] Conservative dynamical systems involving strong forces. Trans. Amer. Mat. Soc. 204, 1975, 113-135. | MR | Zbl
,[13] Periodic solutions of a class of singular Hamiltonian systems. Nonlinear Anal. T.M.A., 12, 1988, 259-270. | DOI | MR | Zbl
,[14] Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems. Ann. Inst. H. Poincaré, 8, 5, 1991, 459-476. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[15] Indice de Morse des points critiques obtenus par minimax. 1988, Ann. Inst. H. Poincaré, 5, 1988, 221-225. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,