Multiple periodic solutions for Hamiltonian systems with singular potential
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 2, pp. 111-119.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this Note we prove the existence of infinitely many periodic solutions of prescribed period for a Hamiltonian system with a singular potential.
In questa Nota si stabilisce l'esistenza di infinite soluzioni periodiche di periodo assegnato per un sistema Hamiltoniano con potenziale singolare.
@article{RLIN_1992_9_3_2_a4,
     author = {Salvatore, Addolorata},
     title = {Multiple periodic solutions for {Hamiltonian} systems with singular potential},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {111--119},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {2},
     year = {1992},
     zbl = {0763.34034},
     mrnumber = {932787},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_2_a4/}
}
TY  - JOUR
AU  - Salvatore, Addolorata
TI  - Multiple periodic solutions for Hamiltonian systems with singular potential
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1992
SP  - 111
EP  - 119
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_2_a4/
LA  - en
ID  - RLIN_1992_9_3_2_a4
ER  - 
%0 Journal Article
%A Salvatore, Addolorata
%T Multiple periodic solutions for Hamiltonian systems with singular potential
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1992
%P 111-119
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_2_a4/
%G en
%F RLIN_1992_9_3_2_a4
Salvatore, Addolorata. Multiple periodic solutions for Hamiltonian systems with singular potential. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 2, pp. 111-119. http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_2_a4/

[1] A. Ambrosetti - V. Coti Zelati, Critical points with lack of compactness and singular dynamical systems. Ann. Mat. Pura e Appl., 149, 1987, 237-259. | DOI | MR | Zbl

[2] A. Ambrosetti - V. Coti Zelati, Non collision orbits for a class of Keplerian-like potentials. Ann. Inst. H. Poincaré, 5, 1988, 287-295. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[3] B. Bahri - P. H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal., 82, 1989, 412-428. | DOI | MR | Zbl

[4] V. Benci, A new approach to the Morse-Conley theory. In: G. F. DELL' ANTONIO - B. D'ONOFRIO (eds.), Proceedings on Recent advances in Hamiltonian systems. World Scientific, Singapore 1987, 83-96. | MR | Zbl

[5] V. Benci - F. Giannoni, Closed geodesics on non compact Riemannian manifolds. Compt. Rend. Acad. Sc. Paris, 312, I, 1991, 857-861. | MR | Zbl

[6] V. Benci - F. Giannoni, On the closed geodesics on non compact Riemannian manifolds. Preprint.

[7] A. Capozzi - D. Fortunato - A. Salvatore, Periodic solutions of Lagrangian systems with bounded potential. J. Math. Anal. Appl., 124, 1987, 482-494. | DOI | MR | Zbl

[8] A. Capozzi - C. Greco - A. Salvatore, Lagrangian systems in the presence of singularities. Proc. Amer. Math. Soc., 102, 1988, 125-130. | DOI | MR | Zbl

[9] M. De Giovanni - F. Giannoni, Periodic solutions of dynamical systems with Newtonian type potentials. Ann. Scuola Norm. Sup. Pisa, 15, 1988, 467-494. | fulltext EuDML | fulltext mini-dml | Zbl

[10] M. De Giovanni - F. Giannoni - A. Marino, Dynamical systems with Newtonian type potentials. Atti Acc. Lincei Rend. fis., s. 8, 81, 1987, 271-278. | MR | Zbl

[11] F. Giannoni, Geodesics on non static Lorentz manifolds of Reissner-Nordstrôm type. Math. Annalen., 291, 1991, 383-401. | fulltext EuDML | DOI | MR | Zbl

[12] W. B. Gordon, Conservative dynamical systems involving strong forces. Trans. Amer. Mat. Soc. 204, 1975, 113-135. | MR | Zbl

[13] C. Greco, Periodic solutions of a class of singular Hamiltonian systems. Nonlinear Anal. T.M.A., 12, 1988, 259-270. | DOI | MR | Zbl

[14] P. Majer, Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems. Ann. Inst. H. Poincaré, 8, 5, 1991, 459-476. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[15] C. Viterbo, Indice de Morse des points critiques obtenus par minimax. 1988, Ann. Inst. H. Poincaré, 5, 1988, 221-225. | fulltext EuDML | fulltext mini-dml | MR | Zbl