Some new results on a Stefan problem in a concentrated capacity
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 1, pp. 23-34.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

An existence and uniqueness theorem for a nonlinear parabolic system of partial differential equations, connected with the theory of heat conduction with a transition phase in a concentrated capacity, is given in sufficiently general hypotheses on the data.
Viene dato un teorema di esistenza e di unicità per un sistema non lineare parabolico di equazioni a derivate parziali, connesso con la teoria della diffusione del calore con cambiamento di fase in una capacità concentrata, in condizioni abbastanza generali sui dati del problema.
@article{RLIN_1992_9_3_1_a2,
     author = {Magenes, Enrico},
     title = {Some new results on a {Stefan} problem in a concentrated capacity},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {1992},
     zbl = {0767.35110},
     mrnumber = {1117356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_1_a2/}
}
TY  - JOUR
AU  - Magenes, Enrico
TI  - Some new results on a Stefan problem in a concentrated capacity
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1992
SP  - 23
EP  - 34
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_1_a2/
LA  - en
ID  - RLIN_1992_9_3_1_a2
ER  - 
%0 Journal Article
%A Magenes, Enrico
%T Some new results on a Stefan problem in a concentrated capacity
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1992
%P 23-34
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_1_a2/
%G en
%F RLIN_1992_9_3_1_a2
Magenes, Enrico. Some new results on a Stefan problem in a concentrated capacity. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_1_a2/

[1] D. Andreucci, Existence and uniqueness of solution to a concentrated capacity problem with change of phase. Europ. J. of Appl. Math., 1, 1990, 339-351. | DOI | MR | Zbl

[2] F. Brezzi, Sul metodo di penalizzazione per operatori parabolici. Rend. Ist. Lombardo, Sc., A 107, 1973, 241-256. | MR | Zbl

[2] G. De Rham, Variétés differentiables. Hermann & C., Paris 1955. | Zbl

[4] A. Fasano - M. Primicerio - L. Rubinstein, A model problem for heat conduction with a free boundary in a concentrated capacity. J. Inst. Maths. Applics., 26, 1980, 327-347. | MR | Zbl

[5] O. Ladyzhenskaya - V. Solonnikov - N. Uralzeva, Linear and quasi-linear equations of parabolic type. Amer. Math. Soc. Transl., 23, 1968. | Zbl

[6] J. L. Lions - E. Magenes, Non homogeneous boundary value problems and applications. Vols. 1 and 2, Springer Verlag, Berlin 1972. | Zbl

[7] E. Magenes, Numerical approximation of non linear evolution problems. In: P. DAUTRAY (ed.), Frontiers in Pure and Applied Mathematics. Proc. Conf. in honour of J. L. Lions, Elsevier, Amsterdam 1991, 193-207. | MR | Zbl

[8] E. Magenes, On a Stefan problem on the boundary of a domain. Proceedings of the Intern. Meeting on Partial Differential Equations and related Problems (in honour to L. Nirenberg) (Trento, Sept. 3/8, 1990). To appear. | MR | Zbl

[9] E. Magenes, On a Stefan problem in a concentrated capacity. Nonlinear Analysis (A tribute in honour of Giovanni Prodi), Scuola Normale Superiore, Pisa, 1991, 217-229. | MR | Zbl

[10] M. Shillor, Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capacity. Proc. Roy. Soc. Edinburgh, Sect. A, 100, 1985, 271-280. | DOI | MR | Zbl

[11] F. Tomarelli, Weak solution for an abstract Cauchy problem of parabolic type. Ann. Mat. Pura e Appl., IV, 33, 1983, 93-123. | DOI | MR | Zbl

[12] F. Tomarelli, Regularity theorems and optimal error estimates for linear parabolic Cauchy problems. Numer. Math., 45, 1984, 23-50. | fulltext EuDML | DOI | MR | Zbl