Regularity of wave and plate equations with interior point control
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 2 (1991) no. 4, pp. 307-315.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The regularity of solutions of various dynamical equations (wave, Euler-Bernoulli, Kirchhoff, Schrödinger) in a bounded open domain \( \Omega \) in \( \mathbb{R}^{N} \), subject to the action of a point control at some point of \( \Omega \), is studied. Detailed proofs of the results are contained in the references [8-10].
Si studia la regolarità delle soluzioni di varie equazioni dinamiche (onde, Euler-Bernoulli, Kirchhoff, Schrödinger) in una regione limitata \( \Omega \) di \( \mathbb{R}^{N} \), sotto l'azione di un controllo esercitato in un punto di \( \Omega \). Le dimostrazioni dettagliate si trovano nei riferimenti bibliografici [8-10].
@article{RLIN_1991_9_2_4_a4,
     author = {Triggiani, Roberto},
     title = {Regularity of wave and plate equations with interior point control},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {307--315},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {4},
     year = {1991},
     zbl = {0756.93034},
     mrnumber = {931277},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_4_a4/}
}
TY  - JOUR
AU  - Triggiani, Roberto
TI  - Regularity of wave and plate equations with interior point control
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1991
SP  - 307
EP  - 315
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_4_a4/
LA  - en
ID  - RLIN_1991_9_2_4_a4
ER  - 
%0 Journal Article
%A Triggiani, Roberto
%T Regularity of wave and plate equations with interior point control
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1991
%P 307-315
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_4_a4/
%G en
%F RLIN_1991_9_2_4_a4
Triggiani, Roberto. Regularity of wave and plate equations with interior point control. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 2 (1991) no. 4, pp. 307-315. http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_4_a4/

[1] J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Review, vol. 30, 1988, 1-68. | DOI | MR | Zbl

[2] J. L. Lions, Pointwise control for distributed systems. SIAM Publication, to appear (based on colloquium given at Workshop held in Tampa, Florida, February 1985). | MR

[3] J. L. Lions, Control des systèmes distribués singuliers. Gauthier Villars, 1983. | MR | Zbl

[4] I. Lasiecka - J. L. Lions - R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators. J. Math. Pures et Appliques, 65, 1986, 149-192. | MR | Zbl

[5] I. Lasiecka - R. Triggiani, A cosine operator approach to modeling \( L_{2} (0,T;L_{2}(\Gamma)) \)-boundary input hyperbolic equations. Appl. Math. and Optimiz., 7, 1981, 35-83. | DOI | MR | Zbl

[6] I. Lasiecka - R. Triggiani, Regularity of hyperbolic equations under \( L_{2} (0,T;L_{2}(\Gamma)) \)-Dirichlet boundary terms. Appl. Math. and Optimiz., 10, 1983, 275-286. | DOI | MR | Zbl

[7] Y. Meyer, Etude d'un modèle mathématique issu du contrôle des structures spatiales déformables. In: H. BREZIS - J. L. LIONS (eds.), Nonlinear Partial Differential Equations and their Applications. College de France Seminar, vol. II, Research Notes in Mathematics, Pitman, Boston 1985, 234-242. | MR | Zbl

[8] R. Triggiani, Regularity with interior point control. Part I: Wave equations and Euler-Bernoulli equations. Lecture notes in mathematics, Spinger-Verlag, to appear. | Zbl

[9] R. Triggiani, Regularity with interior point control. Part II: Kirchhoff equations. J. Diff. Eq., to appear. | Zbl

[10] R. Triggiani, Regularity with interior point control. Part III: Schrödinger equations. J. Mathem. Analysis & Applic., to appear. | Zbl