On the spectrum of Riemannian submersions with totally geodesic fibers
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 4, pp. 335-340.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this Note we give a rule to compute explicitely the spectrum and the eigenfunctions of the total space of a Riemannian submersion with totally geodesic fibers, in terms of the spectra and eigenfunctions of the typical fiber and any associated principal bundle.
In questa Nota diamo una regola di calcolo esplicito dello spettro e delle autofunzioni dello spazio totale di una submersione riemanniana a fibre totalmente geodetiche, in termini dello spettro e delle autofunzioni della fibra tipo e di un qualsiasi fibrato principale associato.
@article{RLIN_1990_9_1_4_a8,
     author = {Besson, G\'erard and Bordoni, Manlio},
     title = {On the spectrum of {Riemannian} submersions with totally geodesic fibers},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {335--340},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {4},
     year = {1990},
     zbl = {0716.53031},
     mrnumber = {650387},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a8/}
}
TY  - JOUR
AU  - Besson, Gérard
AU  - Bordoni, Manlio
TI  - On the spectrum of Riemannian submersions with totally geodesic fibers
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1990
SP  - 335
EP  - 340
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a8/
LA  - en
ID  - RLIN_1990_9_1_4_a8
ER  - 
%0 Journal Article
%A Besson, Gérard
%A Bordoni, Manlio
%T On the spectrum of Riemannian submersions with totally geodesic fibers
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1990
%P 335-340
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a8/
%G en
%F RLIN_1990_9_1_4_a8
Besson, Gérard; Bordoni, Manlio. On the spectrum of Riemannian submersions with totally geodesic fibers. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 4, pp. 335-340. http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a8/

[1] L. Bérard Bergery - J. P. Bourguignon, Laplacians and Riemannian submersions with totally geodesic fibres. Illinois Journal of Math., 26, n. 2, 1982, 181-200. | fulltext mini-dml | MR | Zbl

[2] G. Besson, A Kato type inequality for Riemannian submersions with totally geodesic fibers. Annals of Global Analysis and Geometry, vol. 4, n. 3, 1986, 273-289. | DOI | MR | Zbl

[3] G. Bredon, Introduction to compact transformation groups. Academic Press, 1972. | MR | Zbl

[4] J. Cheeger, Some examples of manifolds of non negative curvature. J. Diff. Geom., 8, 1972, 623-629. | fulltext mini-dml | MR | Zbl

[5] H. Donnelly, G-spaces, the asymptotic splitting of $L^{2} (M)$ into irreducibles. Math. Annalen, 237, 1978, 23-40. | DOI | MR | Zbl

[6] R. Hermann, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. Amer. Math. Soc, vol. II, 1960, 236-242. | MR | Zbl

[7] S. Kobayashi - K. Nomizu, Foundations of differential Geometry. Vol. I. Wiley Interscience, New York-London 1963. | MR | Zbl

[8] B. O'Neill, The fundamental equations of a submersion. Michigan Math. J., 13, 1966, 459-469. | fulltext mini-dml | MR | Zbl

[9] J. P. Serre, Representations linéaires des groupes finis. Hermann, Paris 1971. | MR | Zbl

[10] J. Vilms, Totally geodesic maps. J. Diff. Geom., 4, 1970, 73-79. | fulltext mini-dml | MR | Zbl

[11] G. Warner, Harmonic analysis on semisimple Lie groups. Vol. I. Springer Verlag, 1972. | Zbl