Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1990_9_1_4_a6, author = {Bellettini, Giovanni and Paolini, Maurizio and Verdi, Claudio}, title = {\( {\Gamma} \)-convergence of discrete approximations to interfaces with prescribed mean curvature}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {317--328}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {4}, year = {1990}, zbl = {0721.49038}, mrnumber = {1029833}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a6/} }
TY - JOUR AU - Bellettini, Giovanni AU - Paolini, Maurizio AU - Verdi, Claudio TI - \( \Gamma \)-convergence of discrete approximations to interfaces with prescribed mean curvature JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1990 SP - 317 EP - 328 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a6/ LA - en ID - RLIN_1990_9_1_4_a6 ER -
%0 Journal Article %A Bellettini, Giovanni %A Paolini, Maurizio %A Verdi, Claudio %T \( \Gamma \)-convergence of discrete approximations to interfaces with prescribed mean curvature %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1990 %P 317-328 %V 1 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a6/ %G en %F RLIN_1990_9_1_4_a6
Bellettini, Giovanni; Paolini, Maurizio; Verdi, Claudio. \( \Gamma \)-convergence of discrete approximations to interfaces with prescribed mean curvature. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 4, pp. 317-328. http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a6/
[1] Variational problems in SBV. Acta Applicandae Matematicae, 17, 1989, 1-40. | DOI | MR | Zbl
,[2] Minimal interface criterion for phase transitions and mixture of a Cahn Hilliard fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | fulltext mini-dml | MR | Zbl
,[3] \( \Gamma \)-convergence and numerical analysis: an application to the minimal partitions problem. Ricerche di Matematica, to appear. | MR | Zbl
- ,[4] Numerical minimization of geometrical type problems related to calculus of variations. Calcolo, to appear. | DOI | MR | Zbl
- - ,[5] Front-tracking and variational methods to approximate interfaces with prescribed mean curvature. Proceedings of the Conference on Numerical Methods for Free Boundary Problems, Birkhäuser, Stuttgart, to appear. | MR | Zbl
- - ,[6] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam 1978. | MR | Zbl
,[7] A variational method in image segmentation: existence and approximation results. Preprint S.I.S.S.A., Trieste, 48 M, 1988, 1-79. | DOI | MR | Zbl
- - ,[8] Free discontinuity problems in calculus of variations. Proceedings of the Meeting in honour of J. L. Lions (6-10/6/1988). North-Holland, Amsterdam, to appear. | MR | Zbl
,[9] Su un nuovo tipo di funzionale del calcolo delle variazioni. Atti Acc. Lincei Rend. fis., s. 8, vol. 82, fasc. 2, 1988, 199-210. | MR | Zbl
- ,[10] Existence theorems for a minimum problems with free discontinuity sets. Arch. Rational Mech. Anal., 108, 1989, 195-218. | DOI | MR | Zbl
- - ,[11] Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend. fis., s. 8, vol. 58, 1975, 842-850. | MR | Zbl
- ,[12] Geometric Measure Theory. Springer Verlag, Berlin 1968. | MR | Zbl
,[13] Equilibrium Capillary Surfaces. Springer Verlag, Berlin 1986. | DOI | MR | Zbl
,[14] The gradient theory of phase transitions and minimal interface criterion. Arch. Rational Mech. Anal., 98, 1987, 123-142. | DOI | MR | Zbl
,[15] Un esempio di \( \Gamma \)-convergenza. Boll. Un. Mat. Ital., 5, 14 B, 1977, 285-299. | MR | Zbl
- ,[16] Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Applied Math., 42, 1989, 577-685. | DOI | MR | Zbl
- ,[17] Minimizer and gradient flows for singularly perturbed bistable potentials with a Dirichlet condition. To appear. | Zbl
- - ,[18] Weakly Differentiable Functions. Springer Verlag, Berlin 1989. | DOI | MR | Zbl
,