Unconditionally stable mid-point time integration in elastic-plastic dynamics
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 4, pp. 367-376.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The dynamic analysis of elastoplastic systems discretized by finite elements is dealt with. The material behaviour is described by a rather general internal variable model. The unknown fields are modelled in terms of suitable variables, generalized in Prager's sense. Time integrations are carried out by means of a generalized mid-point rule. The resulting nonlinear equations expressing dynamic equilibrium of the finite step problem are solved by means of a Newton-Raphson iterative scheme. The unconditional stability of the adopted integration method is proved according to two nonlinear stability
Si considera l'analisi dinamica di sistemi elastoplastici discretizzati ad elementi finiti. Il comportamento del materiale è descritto da un modello alquanto generale a variabili interne. I campi incogniti sono modellati in funzione di opportune variabili, generalizzate nel senso di Prager. Le integrazioni nel tempo sono effettuate per incrementi finiti adottando il metodo detto del punto medio generalizzato. Le equazioni non lineari di equilibrio dinamico che così si formulano vengono risolte per mezzo di uno schema iterativo tipo Newton-Raphson. Si dimostra che il metodo di integrazione adottato è incondizionatamente stabile secondo due criteri di stabilità validi in campo non lineare.
@article{RLIN_1990_9_1_4_a11,
     author = {Corigliano, Alberto and Perego, Umberto},
     title = {Unconditionally stable mid-point time integration in elastic-plastic dynamics},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {367--376},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {4},
     year = {1990},
     zbl = {0714.73022},
     mrnumber = {416177},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a11/}
}
TY  - JOUR
AU  - Corigliano, Alberto
AU  - Perego, Umberto
TI  - Unconditionally stable mid-point time integration in elastic-plastic dynamics
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1990
SP  - 367
EP  - 376
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a11/
LA  - en
ID  - RLIN_1990_9_1_4_a11
ER  - 
%0 Journal Article
%A Corigliano, Alberto
%A Perego, Umberto
%T Unconditionally stable mid-point time integration in elastic-plastic dynamics
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1990
%P 367-376
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a11/
%G en
%F RLIN_1990_9_1_4_a11
Corigliano, Alberto; Perego, Umberto. Unconditionally stable mid-point time integration in elastic-plastic dynamics. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 4, pp. 367-376. http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_4_a11/

[1] B. Halphen - Q. S. Nguyen, Sur le matériaux standards généralizés. J. de Mécanique, 14, 1975, 39-63. | MR | Zbl

[2] J. Lemaitre - J. L. Chaboche, Mécanique des matériaux solides. Dunod, Paris 1985.

[3] L. Corradi, On compatible finite element models for elastic plastic analysis. Meccanica, 13, 1978, 133-150. | Zbl

[4] L. Corradi, A displacement formulation for the finite element elastic-plastic problem. Meccanica, 18, 1983, 77-91. | Zbl

[5] C. Comi - G. Maier - U. Perego, Generalized variables finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables. 1990, to appear. | DOI | MR | Zbl

[6] T. J. R. Hughes , Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics. Computer and Structures, 6, 1976, 313-324. | MR | Zbl

[7] T. J. R. Hughes - T. K. Caughey - W. K. Liu, Finite element methods for nonlinear elastodynamics which conserve energy. ASME J. of App. Mech., 45, 1978, 366-370. | Zbl

[8] T. Belytschko - D. F. Schoeberle, On the unconditional stability of an implicit algorithm for non-linear structural dynamics. ASME J. of App. Mech., 17, 1975, 865-869.

[9] T. J. R. Hughes, A note on the stability of Newmark's algorithm in nonlinear structural dynamics. Int. J. for Num. Meth. in Eng., 11, 1977, 383-386. | Zbl

[10] J. C. Simo - S. Govindjee, Nonlinear B-stability and symmetry preserving return mapping algorithms for plasticity and viscoplasticity. 1990, to appear. | DOI | MR | Zbl

[11] J. C. Simo - K. K. Wong, Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy. Int. J. for Num. Meth. in Eng., 1990, to appear. | Zbl

[12] Q. S. Nguyen , On the elastic plastic initial boundary value problem and its numerical integration. Int. J. for Num. Meth. in Eng., 11, 1977, 817-823. | MR | Zbl

[13] C. Comi - A. Corigliano - G. Maier, Extremum properties of finite step solutions in elastoplasticity with nonlinear mixed hardening. Int. J. of Solids and Structures, 1990, to appear. | DOI | MR | Zbl