A continuous version of the Filippov-Gronwall inequality for differential inclusions
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 2, pp. 105-110.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give an estimate for the distance between a given approximate solution for a Lipschitz differential inclusion and a true solution, both depending continuously on initial data.
Si determina una stima per la distanza fra una data soluzione approssimata di una inclusione differenziale lipschitziana e una vera soluzione, con dipendenza continua dai dati iniziali.
@article{RLIN_1990_9_1_2_a5,
     author = {Ornelas, Ant\'onio},
     title = {A continuous version of the {Filippov-Gronwall} inequality for differential inclusions},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {105--110},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {2},
     year = {1990},
     zbl = {0719.34032},
     mrnumber = {430368},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_2_a5/}
}
TY  - JOUR
AU  - Ornelas, António
TI  - A continuous version of the Filippov-Gronwall inequality for differential inclusions
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1990
SP  - 105
EP  - 110
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_2_a5/
LA  - en
ID  - RLIN_1990_9_1_2_a5
ER  - 
%0 Journal Article
%A Ornelas, António
%T A continuous version of the Filippov-Gronwall inequality for differential inclusions
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1990
%P 105-110
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_2_a5/
%G en
%F RLIN_1990_9_1_2_a5
Ornelas, António. A continuous version of the Filippov-Gronwall inequality for differential inclusions. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 2, pp. 105-110. http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_2_a5/

[1] H. A. Antosiewicz - A. Cellina, Continuous selections and differential relations. J. Diff. Eq., 19, 1975, 386-398. | MR | Zbl

[2] J. P. Aubin - A. Cellina, Differential inclusions. Springer, New York 1984. | DOI | MR | Zbl

[3] A. Cellina, On the set of solutions to lipschitzian differential inclusions. Diff. and Integral Eq., to appear. | MR | Zbl

[4] A. Cellina - A. Ornelas, Representation of the attainable set for lipschitzian differential inclusions. Preprint SISSA, 73 M, 1988. | fulltext mini-dml | DOI | MR | Zbl

[5] A. F. Filippov, Classical solutions of differential equations with multivalued right hand side. Vestnik, Moskov. Univ. Ser. Mat. Mech. Astr. 22, 1967, 16-26. [english translation: SIAM J. Controls, 1967, 609-621]. | MR | Zbl

[6] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps. Studia Math., 76, 1983, 163-174. | fulltext mini-dml | MR | Zbl

[7] C. J. Himmelberg, Measurable relations. Fund. Math., 87, 1975, 53-72. | fulltext mini-dml | MR | Zbl

[8] C. J. Himmelberg - F. S. Van Vleck, Lipschitzian generalized differential equations. Rend Sem. Mat. Padova, 48, 1972, 159-169. | fulltext mini-dml | MR | Zbl