Finite groups with an automorphism of prime order whose fixed points are in the Frattini of a nilpotent subgroup
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 2, pp. 89-92.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper it is proved that a finite group G with an automorphism \( \alpha \) of prime order r, such that \( C_{G}(\alpha) = 1 \) is contained in a nilpotent subgroup H, with \( (|H|, r) = 1 \), is nilpotent provided that either \( |H| \) is odd or, if \( |H| \) is even, then r is not a Fermât prime.
In questa nota si prova che un gruppo finito dotato di un automorfismo di ordine primo r, il cui centralizzante è nel sottogruppo di Frattini di un sottogruppo nilpotente H, è nilpotente nell'ipotesi che \( C_{G}(\alpha) = 1 \) ed \( H \) sia dispari, oppure se \( |H| \) è pari r non sia un primo di Fermât.
@article{RLIN_1990_9_1_2_a1,
     author = {Gilotti, Anna Luisa},
     title = {Finite groups with an automorphism of prime order whose fixed points are in the {Frattini} of a nilpotent subgroup},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {89--92},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {2},
     year = {1990},
     zbl = {0728.20016},
     mrnumber = {1008586},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_2_a1/}
}
TY  - JOUR
AU  - Gilotti, Anna Luisa
TI  - Finite groups with an automorphism of prime order whose fixed points are in the Frattini of a nilpotent subgroup
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1990
SP  - 89
EP  - 92
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_2_a1/
LA  - en
ID  - RLIN_1990_9_1_2_a1
ER  - 
%0 Journal Article
%A Gilotti, Anna Luisa
%T Finite groups with an automorphism of prime order whose fixed points are in the Frattini of a nilpotent subgroup
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1990
%P 89-92
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_2_a1/
%G en
%F RLIN_1990_9_1_2_a1
Gilotti, Anna Luisa. Finite groups with an automorphism of prime order whose fixed points are in the Frattini of a nilpotent subgroup. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 2, pp. 89-92. http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_2_a1/

[1] A. L. Gilotti, Finite groups with an automorphism of prime order fixing the Frattini subgroup of a Sylow p-subgroup. B.U.M.I., (7) 3-A, 1989. | MR | Zbl

[2] D. Gorenstein, Finite groups. Harper & Row, New York 1968. | MR | Zbl

[3] B. Rickman, Groups which admit a fixed point free automorphism oforder \( p^{2} \). J. of Algebra, 59, 1979, 77-171. | DOI | MR | Zbl

[4] D. Gorenstein, The classification of finite simple groups. I. Bull. of the American Math. Soc., vol. 1, No 1, 1979. | fulltext mini-dml | DOI | MR | Zbl