Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1990_9_1_1_a6, author = {Cattabriga, Lamberto and Zanghirati, Luisa}, title = {Global analytic and {Gevrey} surjectivity of the {Mizohata} operator \( {D_2} + i x^{2k}_{2} {D_{1}} \)}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {37--39}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {1}, year = {1990}, zbl = {0707.35036}, mrnumber = {1083556}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a6/} }
TY - JOUR AU - Cattabriga, Lamberto AU - Zanghirati, Luisa TI - Global analytic and Gevrey surjectivity of the Mizohata operator \( D_2 + i x^{2k}_{2} D_{1} \) JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1990 SP - 37 EP - 39 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a6/ LA - en ID - RLIN_1990_9_1_1_a6 ER -
%0 Journal Article %A Cattabriga, Lamberto %A Zanghirati, Luisa %T Global analytic and Gevrey surjectivity of the Mizohata operator \( D_2 + i x^{2k}_{2} D_{1} \) %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1990 %P 37-39 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a6/ %G en %F RLIN_1990_9_1_1_a6
Cattabriga, Lamberto; Zanghirati, Luisa. Global analytic and Gevrey surjectivity of the Mizohata operator \( D_2 + i x^{2k}_{2} D_{1} \). Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 1, pp. 37-39. http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a6/
[1] Applications of the projective limit functor to convolution and partial differential equations. Proceeding of the NATO ASW on Fréchet spaces, Istanbul, August 1988, D. Reidel Publishing Comp. (to appear). | MR | Zbl
- - ,[2] Solutions in Gevrey spaces of partial differential equations with constant coefficients. Astérisque, 89-90, 1981, 129-151. | MR | Zbl
,[3] On the surjectivity of differential polynomials on Gevrey spaces. Rend. Sem. Mat. Univ. Politec. Torino, Fasc. speciale, Convegno Linear partial and pseudodifferential operators, Torino, 30 Sett. - 2 Ott. 1982, 41, 1983, 81-89. | MR | Zbl
,[4] Solutions analytiques des équations aux dérivées partielles à coefficients constants. Séminaire Goulauic-Schwartz 1971-72, Equations aux dérivées partielles et analyse fonctionelle, Exp. N. 29, Ecole Polytech. Centre de Math., Paris 1972. | fulltext mini-dml | fulltext mini-dml | MR | Zbl
,[5] Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti. Boll. Un. Mat. Ital. (4), 4, 1971, 1015-1027. | MR | Zbl
- ,[6] Lewy's operator and its ramifications. J. Funct. Anal, 68, 1986, 329-265. | DOI | MR | Zbl
,[7] Estimates for partially hypoelliptic differential operators. Medd. Lund Univ. Mat. Sem., 17, 1963, 1-93. | MR | Zbl
,[8] On the existence of real analytic solutions of partial equations with constant coefficients. Inventiones Math., 21, 1973, 151-182. | MR | Zbl
,[9] The analysis of linear partial differential operators. Springer Verlag, vol. IV, 1983. | Zbl
,[10] On the global existence of real analytic solutions of linear differential equations I and II. J. Math. Soc. Japan, 24, 1972, 481-517; 25, 1973, 644-647. | fulltext mini-dml | fulltext mini-dml | MR | Zbl
,[11] On the global existence of real analytic solutions and hyperfunction solutions of linear differential equations. Publ. RIMS Kyoto University, 555, 1986.
,[12] An analogue of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem of ultradistributions as its dual. J. Fac. Sci. Univ. Tokyo, Sec. IA, 26, 1979, 239-254. | MR | Zbl
,[13] Solutions nulles et solutions non analytiques. J. Math. Kyoto Univ., 1, 1962, 271-302. | fulltext mini-dml | MR | Zbl
,[14] On linear partial differential operators with multiple characteristics. Proceedings Conf. on Partial Differential Equations (Holzhau, GDR, 1988), Teubner Text zur Mathematik. | MR | Zbl
,[15] An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations. Boll. Un. Mat. It. (6), V-B, 1986, 361-392. | MR | Zbl
,