Global analytic and Gevrey surjectivity of the Mizohata operator \( D_2 + i x^{2k}_{2} D_{1} \)
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 1, pp. 37-39.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The surjectivity of the operator \( D_2 + i x^{2k}_{2} D_{1} \) from the Gevrey space \( \mathcal{E}^{\{s\}}(\mathbb{R}^{2}) \), \( s \geq 1 \), onto itself and its non-surjectivity from \( \mathcal{E}^{\{s\}}(\mathbb{R}^{3}) \) to \( \mathcal{E}^{\{s\}}(\mathbb{R}^{3}) \) is proved.
Si prova che l'operatore \( D_2 + i x^{2k}_{2} D_{1} \) è suriettivo dallo spazio di Gevrey \( \mathcal{E}^{\{s\}}(\mathbb{R}^{2}) \), \( s \geq 1 \), su sé stesso e che ciò non accade per lo stesso operatore da \( \mathcal{E}^{\{s\}}(\mathbb{R}^{3}) \) ad \( \mathcal{E}^{\{s\}}(\mathbb{R}^{3}) \).
@article{RLIN_1990_9_1_1_a6,
     author = {Cattabriga, Lamberto and Zanghirati, Luisa},
     title = {Global analytic and {Gevrey} surjectivity of the {Mizohata} operator \( {D_2} + i x^{2k}_{2} {D_{1}} \)},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {37--39},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {1990},
     zbl = {0707.35036},
     mrnumber = {1083556},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a6/}
}
TY  - JOUR
AU  - Cattabriga, Lamberto
AU  - Zanghirati, Luisa
TI  - Global analytic and Gevrey surjectivity of the Mizohata operator \( D_2 + i x^{2k}_{2} D_{1} \)
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1990
SP  - 37
EP  - 39
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a6/
LA  - en
ID  - RLIN_1990_9_1_1_a6
ER  - 
%0 Journal Article
%A Cattabriga, Lamberto
%A Zanghirati, Luisa
%T Global analytic and Gevrey surjectivity of the Mizohata operator \( D_2 + i x^{2k}_{2} D_{1} \)
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1990
%P 37-39
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a6/
%G en
%F RLIN_1990_9_1_1_a6
Cattabriga, Lamberto; Zanghirati, Luisa. Global analytic and Gevrey surjectivity of the Mizohata operator \( D_2 + i x^{2k}_{2} D_{1} \). Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 1, pp. 37-39. http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a6/

[1] R. W. Braun - R. Meise - D. Vogt, Applications of the projective limit functor to convolution and partial differential equations. Proceeding of the NATO ASW on Fréchet spaces, Istanbul, August 1988, D. Reidel Publishing Comp. (to appear). | MR | Zbl

[2] L. Cattabriga, Solutions in Gevrey spaces of partial differential equations with constant coefficients. Astérisque, 89-90, 1981, 129-151. | MR | Zbl

[3] L. Cattabriga, On the surjectivity of differential polynomials on Gevrey spaces. Rend. Sem. Mat. Univ. Politec. Torino, Fasc. speciale, Convegno Linear partial and pseudodifferential operators, Torino, 30 Sett. - 2 Ott. 1982, 41, 1983, 81-89. | MR | Zbl

[4] E. De Giorgi, Solutions analytiques des équations aux dérivées partielles à coefficients constants. Séminaire Goulauic-Schwartz 1971-72, Equations aux dérivées partielles et analyse fonctionelle, Exp. N. 29, Ecole Polytech. Centre de Math., Paris 1972. | fulltext mini-dml | fulltext mini-dml | MR | Zbl

[5] E. De Giorgi - L. Cattabriga, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti. Boll. Un. Mat. Ital. (4), 4, 1971, 1015-1027. | MR | Zbl

[6] L. Ehrenpreis, Lewy's operator and its ramifications. J. Funct. Anal, 68, 1986, 329-265. | DOI | MR | Zbl

[7] J. Friberg, Estimates for partially hypoelliptic differential operators. Medd. Lund Univ. Mat. Sem., 17, 1963, 1-93. | MR | Zbl

[8] L. Hörmander, On the existence of real analytic solutions of partial equations with constant coefficients. Inventiones Math., 21, 1973, 151-182. | MR | Zbl

[9] L. Hörmander, The analysis of linear partial differential operators. Springer Verlag, vol. IV, 1983. | Zbl

[10] T. Kawai, On the global existence of real analytic solutions of linear differential equations I and II. J. Math. Soc. Japan, 24, 1972, 481-517; 25, 1973, 644-647. | fulltext mini-dml | fulltext mini-dml | MR | Zbl

[11] T. Kawai, On the global existence of real analytic solutions and hyperfunction solutions of linear differential equations. Publ. RIMS Kyoto University, 555, 1986.

[12] H. Komatsu, An analogue of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem of ultradistributions as its dual. J. Fac. Sci. Univ. Tokyo, Sec. IA, 26, 1979, 239-254. | MR | Zbl

[13] S. Mizohata, Solutions nulles et solutions non analytiques. J. Math. Kyoto Univ., 1, 1962, 271-302. | fulltext mini-dml | MR | Zbl

[14] L. Rodino, On linear partial differential operators with multiple characteristics. Proceedings Conf. on Partial Differential Equations (Holzhau, GDR, 1988), Teubner Text zur Mathematik. | MR | Zbl

[15] G. Zampieri, An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations. Boll. Un. Mat. It. (6), V-B, 1986, 361-392. | MR | Zbl