An integrality criterion for elliptic modular forms
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 1, pp. 3-9.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let \( f \) be an elliptic modular form level of N. We present a criterion for the integrality of \( f \) at primes not dividing N. The result is in terms of the values at CM points of the forms obtained applying to \( f \) the iterates of the Maaß differential operators.
Si enuncia un criterio di integralità per i primi non dividenti il livello per forme modulari ellittiche. Il criterio si basa sui valori assunti in certi punti particolari del semipiano a parte immaginaria positiva dalle forme ottenute applicando gli iterati degli operatori di Maaß alla forma in esame.
@article{RLIN_1990_9_1_1_a1,
     author = {Mori, Andrea},
     title = {An integrality criterion for elliptic modular forms},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {1990},
     zbl = {0702.11025},
     mrnumber = {552530},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a1/}
}
TY  - JOUR
AU  - Mori, Andrea
TI  - An integrality criterion for elliptic modular forms
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1990
SP  - 3
EP  - 9
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a1/
LA  - en
ID  - RLIN_1990_9_1_1_a1
ER  - 
%0 Journal Article
%A Mori, Andrea
%T An integrality criterion for elliptic modular forms
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1990
%P 3-9
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a1/
%G en
%F RLIN_1990_9_1_1_a1
Mori, Andrea. An integrality criterion for elliptic modular forms. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a1/

[1] M. Harris, A note on three lemmas of Shimura. Duke Math. J., 46, 1979, 871-879. | fulltext mini-dml | MR | Zbl

[2] M. Harris, Special values of zeta functions attached to Siegel modular forms. Ann. scient. Ec. Norm. Sup., IV-4, 1981, 77-120. | fulltext mini-dml | MR | Zbl

[3] J. Igusa, On the algebraic theory of elliptic modular functions. J. Math. Soc. Japan, 20, 1968, 96-106. | fulltext mini-dml | MR | Zbl

[4] N. Katz, p-adic properties of modular schemes and modular forms. In: Modular functions of one variable III. LNM, Springer, 350, 1973, 70-189. | MR | Zbl

[5] N. Katz, p-adic interpolation of real analytic Eisenstein series. Annals of Math., 104, 1976, 459-571. | MR | Zbl

[6] N. Katz, p-adic L-functions for CM fields. Inventiones Math., 49, 1981, 199-297. | DOI | MR | Zbl

[7] N. Katz, Serre-Tate local moduli. In: Surfaces Algebraiques. LMN, Springer, 868, 1981, 138-202. | MR | Zbl

[8] H. Maaß, Die Differentialgleichungen in der Théorie der Siegelschen Modulfunktionen. Math. Ann., 126, 1953, 44-68. | MR | Zbl

[9] A. Mori, Integrality of elliptic modular forms via Maaß operators. Ph. D. thesis, Brandeis Univ., 1989. | MR

[10] S. Ramanujan, On certain arithmetical functions. Trans. Camb. Phil. Soc, 22, 1916, 159-184.

[11] J. P. Serre, Une interpretation des congruences relatives à la fonction \( \tau \) de Ramanujan. Séminaire Delonge-Pisot-Poitou, 1967-68, exposé 14. | fulltext mini-dml | Zbl

[12] J. P. Serre, Congruences et formes modulaires. Séminaire Bourbaki, exposé 416, LNM, Springer, 317, 1973. | fulltext mini-dml | MR | Zbl

[13] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten and Princeton Univ. Press, 1971. | MR | Zbl

[14] H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms. In: Modular functions of one variable III. LNM, Springer, 350, 1973, 1-56. | MR | Zbl