Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 177-186 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution of the finite-step analysis problem. This communication anticipates in an abbreviated form results to be presented elsewhere in an extended form: here proofs and various comments are omitted.
@article{RLINA_1989_8_83_1_a26,
     author = {Comi, Claudia and Maier, Giulio},
     title = {Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {177--186},
     year = {1989},
     volume = {Ser. 8, 83},
     number = {1},
     zbl = {0732.73017},
     mrnumber = {1142456},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/}
}
TY  - JOUR
AU  - Comi, Claudia
AU  - Maier, Giulio
TI  - Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1989
SP  - 177
EP  - 186
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/
LA  - en
ID  - RLINA_1989_8_83_1_a26
ER  - 
%0 Journal Article
%A Comi, Claudia
%A Maier, Giulio
%T Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1989
%P 177-186
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/
%G en
%F RLINA_1989_8_83_1_a26
Comi, Claudia; Maier, Giulio. Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 177-186. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/

[1] Casciaro R. - Mancuso M., 1988. Un approccio numerico al problema dell'elastoplasticità incrementale. Omaggio a Giulio Ceradini: 177-187.

[2] Corradi L., 1983. A Displacement formulation for the Finite Element Elastic-Plastic Problem. Meccanica, 18: 77-91. | Zbl

[3] De Donato O. - Maier G., 1979. Mathematical Programming Methods for the Inelastic Analysis of Reinforced Concrete Frames Allowing for Limited Rotation Capacity. Int. J. for Num. Meth. in Eng., 4: 307-329.

[4] Drucker D.C., 1964. On the Postulate of Stability of Material in Mechanics of Continua. Journal de Mécanique, 3: 235-249. | MR

[5] Franchi A. - Genna F., 1984. Minimum Principles and Initial Stress Method in Elastic-Plastic Analysis. Engineering Structures: 65-69.

[6] Maier G., 1969. Some Theorems for Plastic Strain Rates and Plastic Strains. Journal de Mécanique, 8: 5-19. | Zbl

[7] Mater G., 1970. A Matrix Structural Theory of Piecewise-Linear Plasticity with Interacting Yield Planes. Meccanica, 5: 55-66.

[8] Maier G. - Nappi A., 1989. Backward Difference Time Integration, Nonlinear Programming and Extremum Theorems in Elastoplastic Analysis. Solid Mechanics Archives, 14(1): 37-64. | MR | Zbl

[9] Maier G. - Novati G., 1988. Externum Theorems for Finite-Step Backward-Difference Analysis of Elastic-Plastic Nonlinearly Hardening Solids. Rend. Acc. Naz. dei Lincei, Cl. Sci., to appear. | MR | Zbl

[10] Martin J.B. - Nappi A., An Internal Variable Formulation of Perfectly Plastic and Linear Kinematic and Isotropic Hardening Relations with a Von Mises Yield Condition. European Journal of Mechanics, to appear.

[11] Martin J.B. - Reddy B.D., 1988. Variational Principles and Solution Algorithms for Internal Variable Formulations of Problems in Plasticity. Omaggio a Giulio Ceradini: 465-477.

[12] Ortiz M. - Popov E.P., 1985. Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations. Int. J. Num. Methods in Engineering, 21: 1561-1576. | DOI | MR | Zbl

[13] Ortiz M. - Simo J.C., 1986. An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Relations. Int. J. Numer. Methods Eng., 23: 353-366. | DOI | MR | Zbl

[14] Perego U., 1988. Explicit Backward Difference Operators and Consistent Predictors for Linear Hardening Elastic-Plastic Constitutive Laws. Sol. Mech. Arch., 13: 65-102. | Zbl

[15] Resende L. - Martin J.B., 1985. Formulation of Drucker-Prager Cap Model. ASCE J. of Eng. Mech., 111, 7: 855-881.

[16] Simo J.C. - Taylor R.L., 1985. Consistent Tangent Operators for Rate-Independent Elastoplasticity. Comp. Methods Appl. Mech. Eng., 48: 101-118. | Zbl

[17] Simo J.C. - Kennedy J.G. - Govindjee S., 1988. Non-Smooth Multisurface Plasticity and Viscoplasticity Loading/Unloading Conditions and Numerical Algorithms. Int. Jour, for Num. Methods in Eng., 26: 2161-2185. | DOI | MR | Zbl