Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 177-186.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution of the finite-step analysis problem. This communication anticipates in an abbreviated form results to be presented elsewhere in an extended form: here proofs and various comments are omitted.
Per una classe di leggi costituitive elastoplastiche con incrudimento nonlineare cinematico ed isotropo, il problema relativo alla determinazione della risposta ad un passo di carico finito viene formulato in base ad uno schema implicito per "differenza all'indietro" (formulazione olonoma nel passo) con riferimento a modelli strutturali discreti. Il problema è ricondotto alla programmazione nonlineare e se ne deduce un criterio di convergenza monotona di un algoritmo iterativo per la risoluzione del problema di analisi nel passo finito. In questa nota alcuni risultati da presentare altrove in forma più estesa e dettagliata vengono comunicati in forma abbreviata omettendo dimostrazioni e vari commenti.
@article{RLINA_1989_8_83_1_a26,
     author = {Comi, Claudia and Maier, Giulio},
     title = {Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {177--186},
     publisher = {mathdoc},
     volume = {Ser. 8, 83},
     number = {1},
     year = {1989},
     zbl = {0732.73017},
     mrnumber = {1142456},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/}
}
TY  - JOUR
AU  - Comi, Claudia
AU  - Maier, Giulio
TI  - Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1989
SP  - 177
EP  - 186
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/
LA  - en
ID  - RLINA_1989_8_83_1_a26
ER  - 
%0 Journal Article
%A Comi, Claudia
%A Maier, Giulio
%T Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1989
%P 177-186
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/
%G en
%F RLINA_1989_8_83_1_a26
Comi, Claudia; Maier, Giulio. Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 177-186. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/

[1] Casciaro R. - Mancuso M., 1988. Un approccio numerico al problema dell'elastoplasticità incrementale. Omaggio a Giulio Ceradini: 177-187.

[2] Corradi L., 1983. A Displacement formulation for the Finite Element Elastic-Plastic Problem. Meccanica, 18: 77-91. | Zbl

[3] De Donato O. - Maier G., 1979. Mathematical Programming Methods for the Inelastic Analysis of Reinforced Concrete Frames Allowing for Limited Rotation Capacity. Int. J. for Num. Meth. in Eng., 4: 307-329.

[4] Drucker D.C., 1964. On the Postulate of Stability of Material in Mechanics of Continua. Journal de Mécanique, 3: 235-249. | MR

[5] Franchi A. - Genna F., 1984. Minimum Principles and Initial Stress Method in Elastic-Plastic Analysis. Engineering Structures: 65-69.

[6] Maier G., 1969. Some Theorems for Plastic Strain Rates and Plastic Strains. Journal de Mécanique, 8: 5-19. | Zbl

[7] Mater G., 1970. A Matrix Structural Theory of Piecewise-Linear Plasticity with Interacting Yield Planes. Meccanica, 5: 55-66.

[8] Maier G. - Nappi A., 1989. Backward Difference Time Integration, Nonlinear Programming and Extremum Theorems in Elastoplastic Analysis. Solid Mechanics Archives, 14(1): 37-64. | MR | Zbl

[9] Maier G. - Novati G., 1988. Externum Theorems for Finite-Step Backward-Difference Analysis of Elastic-Plastic Nonlinearly Hardening Solids. Rend. Acc. Naz. dei Lincei, Cl. Sci., to appear. | MR | Zbl

[10] Martin J.B. - Nappi A., An Internal Variable Formulation of Perfectly Plastic and Linear Kinematic and Isotropic Hardening Relations with a Von Mises Yield Condition. European Journal of Mechanics, to appear.

[11] Martin J.B. - Reddy B.D., 1988. Variational Principles and Solution Algorithms for Internal Variable Formulations of Problems in Plasticity. Omaggio a Giulio Ceradini: 465-477.

[12] Ortiz M. - Popov E.P., 1985. Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations. Int. J. Num. Methods in Engineering, 21: 1561-1576. | DOI | MR | Zbl

[13] Ortiz M. - Simo J.C., 1986. An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Relations. Int. J. Numer. Methods Eng., 23: 353-366. | DOI | MR | Zbl

[14] Perego U., 1988. Explicit Backward Difference Operators and Consistent Predictors for Linear Hardening Elastic-Plastic Constitutive Laws. Sol. Mech. Arch., 13: 65-102. | Zbl

[15] Resende L. - Martin J.B., 1985. Formulation of Drucker-Prager Cap Model. ASCE J. of Eng. Mech., 111, 7: 855-881.

[16] Simo J.C. - Taylor R.L., 1985. Consistent Tangent Operators for Rate-Independent Elastoplasticity. Comp. Methods Appl. Mech. Eng., 48: 101-118. | Zbl

[17] Simo J.C. - Kennedy J.G. - Govindjee S., 1988. Non-Smooth Multisurface Plasticity and Viscoplasticity Loading/Unloading Conditions and Numerical Algorithms. Int. Jour, for Num. Methods in Eng., 26: 2161-2185. | DOI | MR | Zbl