Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1989_8_83_1_a26, author = {Comi, Claudia and Maier, Giulio}, title = {Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {177--186}, publisher = {mathdoc}, volume = {Ser. 8, 83}, number = {1}, year = {1989}, zbl = {0732.73017}, mrnumber = {1142456}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/} }
TY - JOUR AU - Comi, Claudia AU - Maier, Giulio TI - Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1989 SP - 177 EP - 186 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/ LA - en ID - RLINA_1989_8_83_1_a26 ER -
%0 Journal Article %A Comi, Claudia %A Maier, Giulio %T Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1989 %P 177-186 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/ %G en %F RLINA_1989_8_83_1_a26
Comi, Claudia; Maier, Giulio. Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 177-186. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a26/
[1] Un approccio numerico al problema dell'elastoplasticità incrementale. Omaggio a Giulio Ceradini: 177-187.
- , 1988.[2] A Displacement formulation for the Finite Element Elastic-Plastic Problem. Meccanica, 18: 77-91. | Zbl
, 1983.[3] Mathematical Programming Methods for the Inelastic Analysis of Reinforced Concrete Frames Allowing for Limited Rotation Capacity. Int. J. for Num. Meth. in Eng., 4: 307-329.
- , 1979.[4] On the Postulate of Stability of Material in Mechanics of Continua. Journal de Mécanique, 3: 235-249. | MR
, 1964.[5] Minimum Principles and Initial Stress Method in Elastic-Plastic Analysis. Engineering Structures: 65-69.
- , 1984.[6] Some Theorems for Plastic Strain Rates and Plastic Strains. Journal de Mécanique, 8: 5-19. | Zbl
, 1969.[7] A Matrix Structural Theory of Piecewise-Linear Plasticity with Interacting Yield Planes. Meccanica, 5: 55-66.
, 1970.[8] Backward Difference Time Integration, Nonlinear Programming and Extremum Theorems in Elastoplastic Analysis. Solid Mechanics Archives, 14(1): 37-64. | MR | Zbl
- , 1989.[9] Externum Theorems for Finite-Step Backward-Difference Analysis of Elastic-Plastic Nonlinearly Hardening Solids. Rend. Acc. Naz. dei Lincei, Cl. Sci., to appear. | MR | Zbl
- , 1988.[10] An Internal Variable Formulation of Perfectly Plastic and Linear Kinematic and Isotropic Hardening Relations with a Von Mises Yield Condition. European Journal of Mechanics, to appear.
- ,[11] Variational Principles and Solution Algorithms for Internal Variable Formulations of Problems in Plasticity. Omaggio a Giulio Ceradini: 465-477.
- , 1988.[12] Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations. Int. J. Num. Methods in Engineering, 21: 1561-1576. | DOI | MR | Zbl
- , 1985.[13] An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Relations. Int. J. Numer. Methods Eng., 23: 353-366. | DOI | MR | Zbl
- , 1986.[14] Explicit Backward Difference Operators and Consistent Predictors for Linear Hardening Elastic-Plastic Constitutive Laws. Sol. Mech. Arch., 13: 65-102. | Zbl
, 1988.[15] Formulation of Drucker-Prager Cap Model. ASCE J. of Eng. Mech., 111, 7: 855-881.
- , 1985.[16] Consistent Tangent Operators for Rate-Independent Elastoplasticity. Comp. Methods Appl. Mech. Eng., 48: 101-118. | Zbl
- , 1985.[17] Non-Smooth Multisurface Plasticity and Viscoplasticity Loading/Unloading Conditions and Numerical Algorithms. Int. Jour, for Num. Methods in Eng., 26: 2161-2185. | DOI | MR | Zbl
- - , 1988.