Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1989_8_83_1_a16, author = {Brandi, Primo and Salvadori, Anna}, title = {On a class of variational integrals over {BV} varieties}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {101--108}, publisher = {mathdoc}, volume = {Ser. 8, 83}, number = {1}, year = {1989}, zbl = {0735.49040}, mrnumber = {1142446}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a16/} }
TY - JOUR AU - Brandi, Primo AU - Salvadori, Anna TI - On a class of variational integrals over BV varieties JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1989 SP - 101 EP - 108 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a16/ LA - en ID - RLINA_1989_8_83_1_a16 ER -
%0 Journal Article %A Brandi, Primo %A Salvadori, Anna %T On a class of variational integrals over BV varieties %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1989 %P 101-108 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a16/ %G en %F RLINA_1989_8_83_1_a16
Brandi, Primo; Salvadori, Anna. On a class of variational integrals over BV varieties. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 101-108. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a16/
[1] Sull'integrale debole alla Burkill-Cesari. Atti Sem. Mat. Univ. Modena, 27: 12-38. | MR | Zbl
and , (a) 1978.Existence, semicontinuity and representation for the integrals of the Calculus of Variations. The BV case. Atti Convegno celebrativo I centenario Circolo Matematico di Palermo: 447-462. | MR | Zbl
and , (b) 1984.L'integrale del Calcolo delle Variazioni alla Weierstrass lungo curve BV e confronto con i funzionali integrali di Lebesgue e Serrin. Atti Sem. Mat. Univ. Modena, 35.
and , (c) 1987.A quasi-additivity type condition and the integral over a BV variety. Pacific J., to appear. | MR | Zbl
and , (d)On the non-parametric integral over a BV surface. J. Nonlinear Anal., 13: 1127-1137. | DOI | MR | Zbl
and , (e) 1989.On the lower semicontinuity of certain integrals of the Calculus of Variations. J. Math. Anal. Appl., 144: 183-205. | DOI | MR | Zbl
and , (f) 1989.[2] Burkill-Cesari integrals of quasi additive interval functions. Pacific. J., 37: 635- 654. | MR | Zbl
, 1971.[3] Quasi additive set functions and the concept of integral over a variety. Trans. Amer. Math. Soc., 102: 94-113. | DOI | MR | Zbl
, (a) 1962.Extension problem for quasi additive set functions and Radon-Nikodym derivatives. Trans. Amer. Math. Soc., 102: 114-146. | DOI | MR | Zbl
, (b) 1962.[4] Discontinuous solutions in problems of optimization. Annali Scuola Normale Sup. Pisa, 15: 219-237. | fulltext EuDML | MR | Zbl
, and , (a) 1988.Existence theorems concerning simple integrals of the calculus of variations for discontinuous solutions. Archive Rat. Mech. Anal., 98: 307-328. | DOI | MR | Zbl
, and , (b) 1987.Existence theorems for multiple integrals of the calculus of variations for discontinuous solutions. Annali Mat. Pura Appl., 52: 95-121. | DOI | MR | Zbl
, and , (c) 1988.[5] On the definition and properties of certain variational integrals. Trans. Amer Math Soc., 101: 139-167. | DOI | MR | Zbl
, 1961.[6] Nonlinear integration and Weierstrass integral over a manifold, connection with theorems on martingales. J.O.T.A., 41: 213-237. | DOI | MR | Zbl
, 1983.[7] The Burkill-Cesari integral. Duke Math. J., 35: 61-78. | MR | Zbl
, (a) 1968.The generalized Weierstrass-type integral $\int f(\xi,\phi)$. Ann. Scuola Norm. Sup. Pisa, 22: 163-192. | fulltext EuDML | MR | Zbl
, (b) 1968.