@article{RLINA_1988_8_82_4_a10,
author = {Maier, Giulio and Novati, Giorgio},
title = {Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {711--715},
year = {1988},
volume = {Ser. 8, 82},
number = {4},
zbl = {0737.73049},
mrnumber = {1139818},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a10/}
}
TY - JOUR AU - Maier, Giulio AU - Novati, Giorgio TI - Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1988 SP - 711 EP - 715 VL - 82 IS - 4 UR - http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a10/ LA - en ID - RLINA_1988_8_82_4_a10 ER -
%0 Journal Article %A Maier, Giulio %A Novati, Giorgio %T Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1988 %P 711-715 %V 82 %N 4 %U http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a10/ %G en %F RLINA_1988_8_82_4_a10
Maier, Giulio; Novati, Giorgio. Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 4, pp. 711-715. http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a10/
[1] , , and (1987) - Applications of Mathematical Programming Concepts to Incremental Elastic-Plastic Analysis, Engineering Structures, 9, 171- 180.
[2] , (1985) - Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations, Int. J. Num. Meth. Engng., 21, 1561-1576. | DOI | MR | Zbl
[3] and (1986) - A Return Mapping Algorithm for Plane Stress Elastoplasticity, Int J. Num. Meth. Engng., 22, 649-670. | DOI | MR | Zbl
[4] and (1986) - Variational Principles and Convergence of Finite Element Approximations of Holonomic Elastic-Plastic Problems, UCT/CSIR Applied Mechanics Research Unit, Technical Report, N. 83. | Zbl
[5] , and (1972) - Inelastic Analysis of Reinforced Concrete Frames by Quadratic Programming, In: Inelasticity and Non-Linearity in Structural Concrete, University of Waterloo Press, Study N. 8, paper 10, 265-288.
[6] and (1973) - Finite Element Elastoplastic Analysis by Quadratic Programming: the Multistage Method, Proc. 2nd Int. Conf. on Structural Mechanics in Reactor Technology (SMIRT), Berlin, Vol. V, Part M.
[7] and (1987) - A Numerical Scheme for Integrating the Rate Plasticity Equations with an "A Priori" Error Control, Comput. Meth. Appl. Mech. Engng., 60 (3), 317-342. | DOI | MR | Zbl
[8] and (1982) - Mathematical Programming Methods in Engineering Plastic Analysis, Appl. Mech. Rev., 35 (12), 1631-1643.
[9] (1968) - Quadratic Programming and Theory of Elastic-Perfectly Plastic Structures, Meccanica, 3 (4), 265-273. | MR | Zbl
[10] (1969) - Teoremi di Minimo in Termini Finiti per Continui Elastoplastici con Leggi Costitutive Linearizzate a Tratti, Rendiconti dell'Istituto Lombardo di Scienze e Lettere, Vol. 103, 1066-1080. | MR | Zbl
[11] (1969) - Complementary Plastic Work Theorems in Piecewise Linear Elastoplasticity, Int. J. Solids Struct., 5, 261-270. | Zbl
[12] and (1985) - Formulation of Drucker-Prager Cap Model, ASCE-J. of Eng. Mech., 111 (7), 855-881.
[13] (1969) - Principi di Minimo per la Soluzione Incrementale dei Problemi Elastoplastici, Rend. Acc. Naz. Lincei, Cl. Sci. | Zbl
[14] and (1970) - Incremental Elastoplastic Analysis and Quadratic Optimization, Meccanica, 4 (1), 107-116. | Zbl
[15] and (1984) - Minimum Principles and Initial Stress Method in Elastic-Plastic Analysis, Engng. Struct. 6 (1), 65-69.
[16] and (1979) - Some Extremal Properties and Energy Theorems for Inelastic Materials and their Relationship to the Deformation Theory of Plasticity, J. Mech. Phys. Solids, 20, 281-300. | MR | Zbl
[17] and (1972) - On Dual Energy Theorems for a Class of Elastic-Plastic Problems Due to G. Maier, J. Mech. Phys. Solids, 20, 301-306. | MR | Zbl