Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 4, pp. 711-715 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

For the finite-step, backward-difference analysis of elastic-plastic solids in small strains, a kinematic (potential energy) and a static (complementary energy) extremum property of the step solution are given under the following hypotheses: each yield function is the sum of an equivalent stress and a yield limit; the former is a positively homogeneous function of order one of stresses, the latter a nonlinear function of nondecreasing internal variables; suitable conditions of "material stability" are assumed. This communication anticipates results to be presented elsewhere in an extended version. Therefore, proofs of the statements and various comments are omitted.
@article{RLINA_1988_8_82_4_a10,
     author = {Maier, Giulio and Novati, Giorgio},
     title = {Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {711--715},
     year = {1988},
     volume = {Ser. 8, 82},
     number = {4},
     zbl = {0737.73049},
     mrnumber = {1139818},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a10/}
}
TY  - JOUR
AU  - Maier, Giulio
AU  - Novati, Giorgio
TI  - Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1988
SP  - 711
EP  - 715
VL  - 82
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a10/
LA  - en
ID  - RLINA_1988_8_82_4_a10
ER  - 
%0 Journal Article
%A Maier, Giulio
%A Novati, Giorgio
%T Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1988
%P 711-715
%V 82
%N 4
%U http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a10/
%G en
%F RLINA_1988_8_82_4_a10
Maier, Giulio; Novati, Giorgio. Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 4, pp. 711-715. http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a10/

[1] J.B. Martin, B.D. Reddy, T.B. Griffin and W.W. Bird (1987) - Applications of Mathematical Programming Concepts to Incremental Elastic-Plastic Analysis, Engineering Structures, 9, 171- 180.

[2] M. Ortiz, And E.P. Popov (1985) - Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations, Int. J. Num. Meth. Engng., 21, 1561-1576. | DOI | MR | Zbl

[3] J.C. Simo and R.L. Taylor (1986) - A Return Mapping Algorithm for Plane Stress Elastoplasticity, Int J. Num. Meth. Engng., 22, 649-670. | DOI | MR | Zbl

[4] B.D. Reddy and T.B. Griffin (1986) - Variational Principles and Convergence of Finite Element Approximations of Holonomic Elastic-Plastic Problems, UCT/CSIR Applied Mechanics Research Unit, Technical Report, N. 83. | Zbl

[5] G. Maier, O. De Donato and L. Corradi (1972) - Inelastic Analysis of Reinforced Concrete Frames by Quadratic Programming, In: Inelasticity and Non-Linearity in Structural Concrete, University of Waterloo Press, Study N. 8, paper 10, 265-288.

[6] O. De Donato and G. Maier (1973) - Finite Element Elastoplastic Analysis by Quadratic Programming: the Multistage Method, Proc. 2nd Int. Conf. on Structural Mechanics in Reactor Technology (SMIRT), Berlin, Vol. V, Part M.

[7] A. Franchi and F. Genna (1987) - A Numerical Scheme for Integrating the Rate Plasticity Equations with an "A Priori" Error Control, Comput. Meth. Appl. Mech. Engng., 60 (3), 317-342. | DOI | MR | Zbl

[8] G. Maier and J. Munro (1982) - Mathematical Programming Methods in Engineering Plastic Analysis, Appl. Mech. Rev., 35 (12), 1631-1643.

[9] G. Maier (1968) - Quadratic Programming and Theory of Elastic-Perfectly Plastic Structures, Meccanica, 3 (4), 265-273. | MR | Zbl

[10] G. Maier (1969) - Teoremi di Minimo in Termini Finiti per Continui Elastoplastici con Leggi Costitutive Linearizzate a Tratti, Rendiconti dell'Istituto Lombardo di Scienze e Lettere, Vol. 103, 1066-1080. | MR | Zbl

[11] G. Maier (1969) - Complementary Plastic Work Theorems in Piecewise Linear Elastoplasticity, Int. J. Solids Struct., 5, 261-270. | Zbl

[12] L. Resende and J.B. Martin (1985) - Formulation of Drucker-Prager Cap Model, ASCE-J. of Eng. Mech., 111 (7), 855-881.

[13] M. Capurso (1969) - Principi di Minimo per la Soluzione Incrementale dei Problemi Elastoplastici, Rend. Acc. Naz. Lincei, Cl. Sci. | Zbl

[14] M. Capurso and G. Maier (1970) - Incremental Elastoplastic Analysis and Quadratic Optimization, Meccanica, 4 (1), 107-116. | Zbl

[15] A. Franchi and F. Genna (1984) - Minimum Principles and Initial Stress Method in Elastic-Plastic Analysis, Engng. Struct. 6 (1), 65-69.

[16] A.R.S. Ponter and J.B. Martin (1979) - Some Extremal Properties and Energy Theorems for Inelastic Materials and their Relationship to the Deformation Theory of Plasticity, J. Mech. Phys. Solids, 20, 281-300. | MR | Zbl

[17] J.B. Martin and A.R.S. Ponter (1972) - On Dual Energy Theorems for a Class of Elastic-Plastic Problems Due to G. Maier, J. Mech. Phys. Solids, 20, 301-306. | MR | Zbl