@article{RLINA_1986_8_80_7-12_a6,
author = {Andres, J\'an},
title = {Boundedness results of solutions to the equation $x^{\prime\prime\prime} + ax^{\prime\prime}+ g (x) x^{\prime}+ h (x) = p (t)$ without the hypothesis $h (x) \, \operatorname{sgn} x \ge 0$ for $|x| > R$.},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {533--539},
year = {1986},
volume = {Ser. 8, 80},
number = {7-12},
zbl = {0722.34027},
mrnumber = {0976947},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLINA_1986_8_80_7-12_a6/}
}
TY - JOUR
AU - Andres, Ján
TI - Boundedness results of solutions to the equation $x^{\prime\prime\prime} + ax^{\prime\prime}+ g (x) x^{\prime}+ h (x) = p (t)$ without the hypothesis $h (x) \, \operatorname{sgn} x \ge 0$ for $|x| > R$.
JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY - 1986
SP - 533
EP - 539
VL - 80
IS - 7-12
UR - http://geodesic.mathdoc.fr/item/RLINA_1986_8_80_7-12_a6/
LA - en
ID - RLINA_1986_8_80_7-12_a6
ER -
%0 Journal Article
%A Andres, Ján
%T Boundedness results of solutions to the equation $x^{\prime\prime\prime} + ax^{\prime\prime}+ g (x) x^{\prime}+ h (x) = p (t)$ without the hypothesis $h (x) \, \operatorname{sgn} x \ge 0$ for $|x| > R$.
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1986
%P 533-539
%V 80
%N 7-12
%U http://geodesic.mathdoc.fr/item/RLINA_1986_8_80_7-12_a6/
%G en
%F RLINA_1986_8_80_7-12_a6
Andres, Ján. Boundedness results of solutions to the equation $x^{\prime\prime\prime} + ax^{\prime\prime}+ g (x) x^{\prime}+ h (x) = p (t)$ without the hypothesis $h (x) \, \operatorname{sgn} x \ge 0$ for $|x| > R$.. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 80 (1986) no. 7-12, pp. 533-539. http://geodesic.mathdoc.fr/item/RLINA_1986_8_80_7-12_a6/
[1] , and (1969) - Nichtlineare Dijferentialgleichungen höherer Ordnung. Cremonese, Roma. | MR | Zbl
[2] and (1973) - Boundedness theorems for certain third order equations. «Atti Accad. Naz. Lincei», (8), 55, 194-201. | MR | Zbl
[3] (1968) - On the boundedness of solutions of the equation $x^{\prime\prime\prime} + ax^{\prime\prime}+ g (x) x^{\prime}+ h (x) = p (t)$. «Ann. Mat. Pura Appl.», 4, 80, 281-299. | MR | Zbl
[4] (1974) - Boundedness and stability for nonlinear third order differential equations. «Atti Accad. Naz. Lincei», (8), 56, 859-865. | MR | Zbl
[5] (1970) - Asymptotic behavior of the solutions of certain third order differential equations. «SIAM J. Appl. Math.», 19, 96-102. | MR | Zbl
[6] (1966) - Einige Bemerkungen über eine nichtlineare Differentialgleichungen dritten Ordnung. «Arch. Math.», 2, 19-26. | fulltext EuDML | MR | Zbl
[7] (1970) - Über eine nichtlineare Differentialgleichung dritter Ordnung. «Czech. Math. J.», 20, 207-219. | fulltext EuDML | fulltext mini-dml | MR | Zbl
[8] (1986) - Boundedness of solutions of the third order differential equation with the oscillatory restoring and forcing terms. «Czech. Math. J.», 1, 1-6. | fulltext EuDML | fulltext mini-dml | MR | Zbl
[9] (1986) - On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order. «Čas. pěst. mat.», 3, 225-229. | fulltext EuDML | MR | Zbl
[10] (1973/74) - Phasenraum-Methoden zum Studium nichtlinearerer Dijferentialgleichungen. «Jber. Deutch. Math.-Verein», 75 (3), 1, 130-139. | fulltext EuDML | MR | Zbl
[11] (1966) - Translation operator along the trajectories of differential equations. «Nauka, Moscow» (in Russian).
[12] (1966) - Stability theory by Liapunov's second method. «Math. Soc. Japan», Tokyo. | MR | Zbl
[13] - Dichotomies for solutions of a certain third order nonlinear differential equation which is not from the class $D$. To appear in «Fasc. Math.». | MR | Zbl
[14] (1970) - Integral manifolds of a class of third order autonomous differential equations. «J. Diff. Eqs.», 7, 274-286. | MR | Zbl