Estimates near the boundary for second order derivatives of solutions of the Dirichlet problem for the biharmonic equation
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 80 (1986) no. 7-12, pp. 525-529.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Per ogni soluzione della (1) nel dominio limitato $\Omega$,, appartenente a $H_{0}^{2}(\Omega)$ e soddisfacente le condizioni (2), si dimostra la maggiorazione (5), valida nell'intorno di ogni punto $x^{0}$ del contorno; si consente a $\partial\Omega$ di essere singolare in $x^{0}$.
@article{RLINA_1986_8_80_7-12_a4,
     author = {Kondratiev, Vladimir A. and Oleinik, Olga A.},
     title = {Estimates near the boundary for second order derivatives of solutions of the {Dirichlet} problem for the biharmonic equation},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {525--529},
     publisher = {mathdoc},
     volume = {Ser. 8, 80},
     number = {7-12},
     year = {1986},
     zbl = {0675.35028},
     mrnumber = {0976945},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1986_8_80_7-12_a4/}
}
TY  - JOUR
AU  - Kondratiev, Vladimir A.
AU  - Oleinik, Olga A.
TI  - Estimates near the boundary for second order derivatives of solutions of the Dirichlet problem for the biharmonic equation
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1986
SP  - 525
EP  - 529
VL  - 80
IS  - 7-12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1986_8_80_7-12_a4/
LA  - en
ID  - RLINA_1986_8_80_7-12_a4
ER  - 
%0 Journal Article
%A Kondratiev, Vladimir A.
%A Oleinik, Olga A.
%T Estimates near the boundary for second order derivatives of solutions of the Dirichlet problem for the biharmonic equation
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1986
%P 525-529
%V 80
%N 7-12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1986_8_80_7-12_a4/
%G en
%F RLINA_1986_8_80_7-12_a4
Kondratiev, Vladimir A.; Oleinik, Olga A. Estimates near the boundary for second order derivatives of solutions of the Dirichlet problem for the biharmonic equation. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 80 (1986) no. 7-12, pp. 525-529. http://geodesic.mathdoc.fr/item/RLINA_1986_8_80_7-12_a4/

[1] Kondratiev V.A. and Oleinik O.A. - Best possible estimates in Hölder spaces for weak solutions of the biharmonic equation, the Navier-Stokes system, and the Karman system in non-smooth two-dimensional domains. «Vestnik Mosc. Univ.», ser. 1, «Mat., Mech.», 6, 22-39, 1983.

[2] Kondratiev V.A., Kopacek J., Lekveishvili D.M. and Oleinik O.A. - Best possible estimates in Hölder spaces and the precise Saint-Venant principle for solutions of the biharmonic equation, «Trudy Mat. Institute im. Steklov», 166, 91-106, 1984. | MR | Zbl

[3] Kondratiev V.A. and Oleinik O.A. - On the smoothness of weak solutions of the Dirichlet problem for the biharmonic equation in domains with non-regular boundary. In: Nonlinear partial differential equations and their applications. College de France seminar, 7, 180-199, 1986. | MR | Zbl

[4] Oleinik O.A. - On some mathematical problems of elasticity. Convegno Celebrativo del Centenario della nascita di Mauro Picone e di Leonida Tonelli, 6-9 maggio 1985. «Accad. Naz. dei Lincei», Roma, 259-273, 1986.

[5] Kopacek J. and Oleinik O.A. - On the behaviour of solutions of the elasticity system in a neighbourhood of irregular points of the boundary and at the infinity, «Transactions of the Moscow Math. Society», 43, 1981. | Zbl

[6] Agmon S.J. Douglis A. and Nirenberg L. - Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. «I. Comm. Pure Appl. Math.», 12, 623-727, 1959. | MR | Zbl

[7] Sobolev S.L. - Some applications of functional analysis to mathematical physics. Leningrad Univers., 1950. | MR | Zbl

[8] Morrey C.B. - Multiple integrals in the calculus of variations. Springer Verlag, 130, 1966. | MR | Zbl

[9] Mazya V.G. and Shaposhnikova T.O. - On requirements for the boundary in $L_{p}$-theory of elliptic boundary value problems, «Dokl. A.N. USSR», 251 (5), 1055-1058, 1980. | MR | Zbl