Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1985_8_79_6_a1, author = {Pietra, Paola and Verdi, Claudio}, title = {On the {Convergence} of the {Approximate} {Free} {Boundary} for the {Parabolic} {Obstacle} {Problem}}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {159--171}, publisher = {mathdoc}, volume = {Ser. 8, 79}, number = {6}, year = {1985}, zbl = {0635.65128}, mrnumber = {0944369}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1985_8_79_6_a1/} }
TY - JOUR AU - Pietra, Paola AU - Verdi, Claudio TI - On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1985 SP - 159 EP - 171 VL - 79 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1985_8_79_6_a1/ LA - en ID - RLINA_1985_8_79_6_a1 ER -
%0 Journal Article %A Pietra, Paola %A Verdi, Claudio %T On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1985 %P 159-171 %V 79 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1985_8_79_6_a1/ %G en %F RLINA_1985_8_79_6_a1
Pietra, Paola; Verdi, Claudio. On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 79 (1985) no. 6, pp. 159-171. http://geodesic.mathdoc.fr/item/RLINA_1985_8_79_6_a1/
[1] Convergence of the discrete free boundaries for finite element approximations, «R.A.I.R.O. Anal. Numér.», 17, 385-395. | fulltext EuDML | fulltext mini-dml | MR | Zbl
and (1983) -[2] A remark on the Hausdorff measure of a free boundary and the convergence of coincidence sets, «Boll. U.M.I.», (5) 18-A, 109-113. | MR | Zbl
(1981) —[3] Fonction de Green discrètes et principe du maximum discret, Thesis Univ. Paris VI.
(1971) -[4] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. | MR | Zbl
(1978) -[5] Maximum principle and uniform convergence for the finite element method, «Comput. Meth. Appl. Engrg.», 2, 17-31. | MR | Zbl
and (1973) -[6] On finite element approximation in the $L^{\infty}$-norm of parabolic obstacle variational inequalities and quasi-variational inequalities, preprint. | Zbl
-[7] Geometric Measure Theory, Springer, Berlin. | MR | Zbl
(1969) -[8] Variational Principles and Free Boundary Problems, Wiley, New York. | MR | Zbl
(1982) -[9] Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam. | MR | Zbl
, and (1981) -[10] R.H. NOCHETTO - A note on the approximation of free boundaries by finite element methods, to appear in $M^{2}AN$ (ex «R.A.I.R.O. Anal. Numér.»). | fulltext EuDML | fulltext mini-dml | MR | Zbl
[11] Convergence of the approximate free boundary for the multidimensional one-phase Stefan problem, to appear in «Comp. Mech.». | Zbl
and -[12] $L^{\infty}$-error estimate for an approximation of a parabolic variational inequality, preprint. | DOI | MR | Zbl
-