@article{RLINA_1983_8_75_3-4_a0,
author = {Mundici, Daniele},
title = {$\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {99--101},
year = {1983},
volume = {Ser. 8, 75},
number = {3-4},
zbl = {0568.03019},
mrnumber = {0780809},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLINA_1983_8_75_3-4_a0/}
}
TY - JOUR AU - Mundici, Daniele TI - $\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1983 SP - 99 EP - 101 VL - 75 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/RLINA_1983_8_75_3-4_a0/ LA - en ID - RLINA_1983_8_75_3-4_a0 ER -
%0 Journal Article %A Mundici, Daniele %T $\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1983 %P 99-101 %V 75 %N 3-4 %U http://geodesic.mathdoc.fr/item/RLINA_1983_8_75_3-4_a0/ %G en %F RLINA_1983_8_75_3-4_a0
Mundici, Daniele. $\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 75 (1983) no. 3-4, pp. 99-101. http://geodesic.mathdoc.fr/item/RLINA_1983_8_75_3-4_a0/
[1] and (1977) - Model Theory. North-Holland, Amsterdam, second edition. | MR
[2] (1974) — Applications of many-sorted interpolation theorems. In: Proceedings Tarski Symposium, «AMS Proc. Symp. Pure Math.», 25, 205-223. | MR | Zbl
[3] and (1979) - An Introduction to the General Theory of Algorithms. North-Holland, Amsterdam, third printing. | MR | Zbl
[4] (1980) - Computational complexity of decision problems in elementary number theory, Springer «Lecture Notes in Mathematics», 834, 211-227. | MR | Zbl
[5] (1976) — Riemann's hypothesis and tests for primality, «Journal of Computer and System Sciences», 13, 300-317. | MR | Zbl
[6] (1984) - NP and Craig's interpolation theorem. In: Logic Colloquium 1982, North-Holland, Amsterdam, to appear. | DOI | MR | Zbl
[7] (1984) - Tautologies with a unique Craig interpolant, uniform vs. nonuniform complexity, submitted for publication. | DOI | MR | Zbl
[8] (1983) - A lower bound for the complexity of Craig's interpolants in sentential logic, «Archiv math. Logik», 23, 27-36. | fulltext EuDML | DOI | MR | Zbl
[9] (1975) - Every prime has a succinct certificate, «SIAM J. Computing», 4, 214-220. | MR | Zbl
[10] (1976) - The Complexity of Computing. Wiley, New York. | MR | Zbl
[11] (1981) - Complexity problems in computational theory, «Russian Math. Surveys», 36, 23-125. | MR | Zbl