Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1983_8_75_3-4_a0, author = {Mundici, Daniele}, title = {$\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {99--101}, publisher = {mathdoc}, volume = {Ser. 8, 75}, number = {3-4}, year = {1983}, zbl = {0568.03019}, mrnumber = {0780809}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1983_8_75_3-4_a0/} }
TY - JOUR AU - Mundici, Daniele TI - $\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1983 SP - 99 EP - 101 VL - 75 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1983_8_75_3-4_a0/ LA - en ID - RLINA_1983_8_75_3-4_a0 ER -
%0 Journal Article %A Mundici, Daniele %T $\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1983 %P 99-101 %V 75 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1983_8_75_3-4_a0/ %G en %F RLINA_1983_8_75_3-4_a0
Mundici, Daniele. $\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 75 (1983) no. 3-4, pp. 99-101. http://geodesic.mathdoc.fr/item/RLINA_1983_8_75_3-4_a0/
[1] Model Theory. North-Holland, Amsterdam, second edition. | MR
and (1977) -[2] Applications of many-sorted interpolation theorems. In: Proceedings Tarski Symposium, «AMS Proc. Symp. Pure Math.», 25, 205-223. | MR | Zbl
(1974) —[3] An Introduction to the General Theory of Algorithms. North-Holland, Amsterdam, third printing. | MR | Zbl
and (1979) -[4] Computational complexity of decision problems in elementary number theory, Springer «Lecture Notes in Mathematics», 834, 211-227. | MR | Zbl
(1980) -[5] Riemann's hypothesis and tests for primality, «Journal of Computer and System Sciences», 13, 300-317. | MR | Zbl
(1976) —[6] NP and Craig's interpolation theorem. In: Logic Colloquium 1982, North-Holland, Amsterdam, to appear. | DOI | MR | Zbl
(1984) -[7] Tautologies with a unique Craig interpolant, uniform vs. nonuniform complexity, submitted for publication. | DOI | MR | Zbl
(1984) -[8] A lower bound for the complexity of Craig's interpolants in sentential logic, «Archiv math. Logik», 23, 27-36. | fulltext EuDML | DOI | MR | Zbl
(1983) -[9] Every prime has a succinct certificate, «SIAM J. Computing», 4, 214-220. | MR | Zbl
(1975) -[10] The Complexity of Computing. Wiley, New York. | MR | Zbl
(1976) -[11] Complexity problems in computational theory, «Russian Math. Surveys», 36, 23-125. | MR | Zbl
(1981) -