@article{RLINA_1979_8_67_3-4_a2,
author = {Terenzi, Paolo},
title = {On bounded and total biorthogonal systems spanning given subspaces},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {168--178},
year = {1979},
volume = {Ser. 8, 67},
number = {3-4},
zbl = {0493.46012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLINA_1979_8_67_3-4_a2/}
}
TY - JOUR AU - Terenzi, Paolo TI - On bounded and total biorthogonal systems spanning given subspaces JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1979 SP - 168 EP - 178 VL - 67 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/RLINA_1979_8_67_3-4_a2/ LA - en ID - RLINA_1979_8_67_3-4_a2 ER -
%0 Journal Article %A Terenzi, Paolo %T On bounded and total biorthogonal systems spanning given subspaces %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1979 %P 168-178 %V 67 %N 3-4 %U http://geodesic.mathdoc.fr/item/RLINA_1979_8_67_3-4_a2/ %G en %F RLINA_1979_8_67_3-4_a2
Terenzi, Paolo. On bounded and total biorthogonal systems spanning given subspaces. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 67 (1979) no. 3-4, pp. 168-178. http://geodesic.mathdoc.fr/item/RLINA_1979_8_67_3-4_a2/
[1] and (1961) - Some remarks on strongly linearly independent sequences and bases in Banach spaces, «Rev. Math, pures et appl.», 61, 589-594.
[2] (1945) - Biorthogonal systems in Banach spaces, «Doklady Akad. Nauk SSSR», 47, 75-78.
[3] (1943) - Sur les bases (au sens large) dans les espaces linéaires, «Doklady Akad. Nauk SSSR», 41, 227-229. | Zbl
[4] (1970) - Geometric Theory of Banach Spaces. Part I. «Russian Mathematical Surveys», 25, 111-170.
[5] and (1975) - On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in $L^{2}$, «St. Math.», 54, 149-159. | fulltext EuDML | Zbl
[6] (1976) - All separable Banach spaces admitfor every $\epsilon > 0$ fundamental total and bounded by $1 + \epsilon$ biorthogonal sequences, «St. Math.», 55, 295-304. | fulltext EuDML | Zbl
[7] (1964) - Baze in spatii Banach II, «Studii si Cercetari Matematice», 15, 157-208.
[8] (1970) - Bases in Banach Spaces I. Springer-Verlag.
[9] (1971) - On Biorthogonal Systems and Total Sequences of Functionals, «Math. Ann.», 193, 183-188. | fulltext EuDML | Zbl
[10] (1977) - Properties of structure and completeness, in a Banach Space, of the sequences without an infinite minimal subsequence, «Istituto Lombardo (Rend. Sc.)», 112, 47-66.
[11] (1978) - Biorthogonal systems in Banach spaces, «Riv. Mat. Univ. Parma» (4) 4, 165-204. | Zbl
[12] (1952) - On biorthogonal systems spanning given subspaces, «Dokl. Akad. Nauk SSSR », 685-689.