The structure of the solution set of some nonlinear problems
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 65 (1978) no. 6, pp. 239-243.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Per equazioni operazionali $Lu + Nu = h$, $L$ ed $N$ operatori in uno spazio di Hilbert reale $X$, $L$ lineare, $N$ non lineare, e sotto moderate ipotesi su $L$ ed $N$, l'insieme delle soluzioni è, generalmente, una varietà di dimensione uguale all'indice di Fredholm di $L$. Precisamente, questo accade effettivamente se la proiezione di $h$ su un opportuno sottospazio $E$ di dimensione finita in $X$ non cade su un certo insieme $Z$ di $E$, di misura zero oppure di prima categoria.
@article{RLINA_1978_8_65_6_a1,
     author = {McKenna, P.J. and Shaw, Howard},
     title = {The structure of the solution set of some nonlinear problems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {239--243},
     publisher = {mathdoc},
     volume = {Ser. 8, 65},
     number = {6},
     year = {1978},
     zbl = {0446.47057},
     mrnumber = {320844},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1978_8_65_6_a1/}
}
TY  - JOUR
AU  - McKenna, P.J.
AU  - Shaw, Howard
TI  - The structure of the solution set of some nonlinear problems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1978
SP  - 239
EP  - 243
VL  - 65
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1978_8_65_6_a1/
LA  - en
ID  - RLINA_1978_8_65_6_a1
ER  - 
%0 Journal Article
%A McKenna, P.J.
%A Shaw, Howard
%T The structure of the solution set of some nonlinear problems
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1978
%P 239-243
%V 65
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1978_8_65_6_a1/
%G en
%F RLINA_1978_8_65_6_a1
McKenna, P.J.; Shaw, Howard. The structure of the solution set of some nonlinear problems. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 65 (1978) no. 6, pp. 239-243. http://geodesic.mathdoc.fr/item/RLINA_1978_8_65_6_a1/

[1] Ambrosetti A. and Prodi G. (1972) - On the inversion of some differentiable mappings with singularities between Banach spaces, «Ann. di Mat. Pura Appl.», IV, 93, 231-247. | DOI | MR | Zbl

[2] Berger M. and Podolak E. (1975) - On the solutions of a nonlinear Dirichlet problem, «Indiana J. Math.», 24, 837-846. | DOI | MR | Zbl

[3] Brezis H. and Nirenberg L. (1978) - Characterisations of the ranges of some nonlinear operators and applications to boundary value problems, «Ann. Scuola Norm. Sup. Pisa», 4, 225-326. | fulltext EuDML | MR | Zbl

[4] Cesari L. (1976) - Functional analysis, nonlinear differential equations, and the alternative method, in «Nonlinear Functional Analysis and Differential Equations» (L. Cesari, R. Kannan and J. D. Schuur, Eds.) Dekker, New York, 1-197. | MR

[5] Cesari L. (1963) - Functional analysis and periodic solutions of nonlinear differential equations. «Contributions to Differential Equations, John Willey», 1, 149-187. | MR

[6] Cesari L. (1964) - Functional analysis and Galerkin's method, «Michigan Math. Journal», 11, 385-414. | MR | Zbl

[7] Fucik S. (1976) - Boundary value problems with jumping nonlinearities, «Cas Prestovani Mat.», 101, 69-87. | fulltext EuDML | MR | Zbl

[8] Hale J. K. (1971) - Applications of alternative problems, Lecture notes of the Lefschetz Center for Dynamical Systems, Brown University.

[9] Hess P. and Ruf B. - On a superelliptic boundary value problem, to appear. | Zbl

[10] Hess P. (1974) - On semicoercive problems, «Indiana Univ. Math. J.», 23, 645-654. | DOI | MR | Zbl

[11] Kazdan J. L. and Warner F. W. (1975) - Remarks on some quasilinear elliptic equations, «Comm. Pure Appl. Math.», 28, 567-597. | DOI | MR | Zbl

[12] Landesman E. M. and Lazer A. C. (1970) - Nonlinear perturbations of elliptic boundary value problems at resonance, «J. Math. Mech.», 19, 609-623. | MR | Zbl

[13] Leray J. and Schauder J. (1934) - Topologie et equations fonctionnelles, «Ann. Sci. École Norm. Sup.», 51, 45-78. | fulltext EuDML | MR | Zbl

[14] Mckenna P. J. and Shaw Howard - On the structure of the set of solutions to some nonlinear boundary value problems, «J. Diff. Equations», to appear. | DOI | MR | Zbl

[15] Mckenna P. J. - On a superlinear elliptic boundary value problem at resonance, «Proc. Amer. Math. Soc.», to appear. | DOI | MR

[16] Mckenna P. J. - On the reduction of a semilinear hyperbolic problem to a Landesman-Lazer type problem, to appear in «Houston Journal of Math.». | MR | Zbl

[17] Rabinowitz P. H. (1978) - Some minimax theorems and applications to nonlinear partial differential equations, in «Nonlinear Analysis, a volume in honor of E. H. Rothe», Academic Press, 161-177. | MR

[18] Shaw Howard (1977) - A nonlinear elliptic boundary value problem at resonance, «J. Diff. Equations», 26, 335-346. | DOI | MR | Zbl

[19] Strauss W. (1971) - On weak solutions of semilinear hyperbolic equations, «An. Acad. Brasil, Ci.», 42, 645-671. | MR

[20] Williams S. A. (1970) - A sharp sufficient conditions for solution of a nonlinear elliptic boundary value problem, «J. Diff. Equations», 8, 580-588. | DOI | MR | Zbl

[21] Yosida Kosaku (1965) - Functional Analysis, Springer Verlag, Berlin. | MR