Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1978_8_65_3-4_a2, author = {Chen, Lu-San and Yu, Fong-Ming}, title = {Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {100--103}, publisher = {mathdoc}, volume = {Ser. 8, 65}, number = {3-4}, year = {1978}, zbl = {0428.34047}, mrnumber = {481248}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1978_8_65_3-4_a2/} }
TY - JOUR AU - Chen, Lu-San AU - Yu, Fong-Ming TI - Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1978 SP - 100 EP - 103 VL - 65 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1978_8_65_3-4_a2/ LA - en ID - RLINA_1978_8_65_3-4_a2 ER -
%0 Journal Article %A Chen, Lu-San %A Yu, Fong-Ming %T Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1978 %P 100-103 %V 65 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1978_8_65_3-4_a2/ %G en %F RLINA_1978_8_65_3-4_a2
Chen, Lu-San; Yu, Fong-Ming. Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 65 (1978) no. 3-4, pp. 100-103. http://geodesic.mathdoc.fr/item/RLINA_1978_8_65_3-4_a2/
[1] Sufficient conditions for nonoscillation of n-th order nonlinear differential equations, «Rend. Accad. Naz. Lincei», 60, 27-31. | MR | Zbl
(1976) -[2] Asymptotic behavior of solutions of functional n-th order differential equations, «Bull. London Math. Soc.», 1O, 186-190. | DOI | MR | Zbl
, and (1978) -[3] Sufficient conditions for the equation $(a(t)x'(t))' + h(t,x(t),x'(t)) + q(t)f(x(t),x'(t)) = e(t,x(t),x'(t))$ to be nonoscillatory, «Funkcialaj Ekvacioj», 18, 35-40. | MR | Zbl
and (1975) -[4] Continuity boundedness and asymptotic behavior of solutions $x''+ q(t) f(x) = r(t)$, «Ann. Mat. Pura Appl.», 101, 307-320. | DOI | MR | Zbl
(1974) -[5] A nonoscillation result for second order ordinary differential equations, «Rend. Accad. Sci. Fis. Mat. Napoli», (4) 41, 3-12. | MR
(1974) -[6] Nonoscillation properties of a nonlinear differential equation, «Proc. Amer. Math. Soc.», 30, 92-96. | DOI | MR | Zbl
(1971) -[7] Some nonoscillation theorems for a second order nonlinear differential equations, «SIAM J. Math. Anal.», 4, 460-465. | DOI | MR | Zbl
(1973) -[8] Nonoscillation of forced fourth order retarded equations, «SIAM J. Appl. Math.», 28, 265-269. | DOI | MR | Zbl
(1975) -[9] Forced nonoscillations in second order functional equations, «Hiroshima Math. J.», 7, 657-665. | MR | Zbl
(1977) -