Teoremi di esistenza al passaggio attraverso valori critici
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 60 (1976) no. 3, pp. 198-201.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Under sole qualitative hypotheses in the large the author has proved the existence of equibounded solutions to nonlinear operational equations in a Hilbert space when a parameter describes an interval containing a point of resonance. Applications have been made to problems of periodic solutions, and to elliptic problems.
@article{RLINA_1976_8_60_3_a2,
     author = {Cesari, Lamberto},
     title = {Teoremi di esistenza al passaggio attraverso valori critici},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {198--201},
     publisher = {mathdoc},
     volume = {Ser. 8, 60},
     number = {3},
     year = {1976},
     zbl = {0364.47029},
     mrnumber = {0493556},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1976_8_60_3_a2/}
}
TY  - JOUR
AU  - Cesari, Lamberto
TI  - Teoremi di esistenza al passaggio attraverso valori critici
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1976
SP  - 198
EP  - 201
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1976_8_60_3_a2/
LA  - it
ID  - RLINA_1976_8_60_3_a2
ER  - 
%0 Journal Article
%A Cesari, Lamberto
%T Teoremi di esistenza al passaggio attraverso valori critici
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1976
%P 198-201
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1976_8_60_3_a2/
%G it
%F RLINA_1976_8_60_3_a2
Cesari, Lamberto. Teoremi di esistenza al passaggio attraverso valori critici. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 60 (1976) no. 3, pp. 198-201. http://geodesic.mathdoc.fr/item/RLINA_1976_8_60_3_a2/

[1] L. Cesari (1963) — Functional analysis and periodic solutions of nonlinear differential equations, «Contributions to Differential Equations», 1, 149-187, Wiley. | MR

[2] L. Cesari (1975) - Alternative methods in nonlinear analysis. International Conference on Differential Equations, Los Angeles. Acad. Press (Antosiewicz ed.), 95-148. | Zbl

[3] L. Cesari (1976) - Functional analysis, nonlinear differential equations, and the alternative method. (Un corso di lezioni al «Summer Institute» alla Michigan State University, East Lansing, Michigan, Giugno 1975). Functional Analysis and Nonlinear Differential Equations. Academic Press (Cesari, Kannar, Schuur eds.), 1976. | MR

[4] L. Cesari e R. Kannan (1976) — An abstract existence theorem at resonance, «Proc. Amer. Math. Soc.». In corso di stampa. | DOI | MR

[5] De Figueiredo (1975) - The Dirichlet problem for nonlinear elliptic equations: a Hilbert space approach. Partial Differential Equations and Related Topics. (Dold and Eckman ed.) Springer Verlag, «Lecture Notes Math.», 446, 144-165. | MR

[6] R. Kannan e P. J. Mckenna - Problems at resonance in an abstract formulation, «Boll. Un. Mat. Italiana». In corso di stampa.

[7] E. M. Landesman e A. C. Lazer (1970) - Nonlinear perturbations of linear elliptic boundary balue problems at resonance, «Journ. Math. Mech.», 19, 609-623. | MR | Zbl

[8] A. C. Lazer e D. E. Leach (1969) — Bounded perturbations of forced harmonic oscillations at resonance, «Annali di Matematica Pura e Appl.», 72, 49-68. | DOI | MR | Zbl

[9] J. Necas (1973) - On the range of nonlinear operators with linear asymptotes which are not invertible, «Comm. Math. Univ. Caroliniensis», 14, 63-72. | fulltext EuDML | MR | Zbl

[10] H. Shaw (1976) - A nonlinear elliptic boundary value problem at resonance, «Journ. Diff. Equations». In corso di stampa | DOI | MR

[11] S. A. Williams (1970) - A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, «Journ. Diff. Equations», 8, 580-586. | DOI | MR | Zbl