Two theorems characterizing increasing k-set contraction mappings
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 59 (1975) no. 6, pp. 749-757.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Vengono caratterizzati certi tipi di contrazioni, facendone fra l'altro applicazione per ritrovare alcuni risultati di Yamamuro [9].
@article{RLINA_1975_8_59_6_a23,
     author = {Singh, Kanhaya Lal},
     title = {Two theorems characterizing increasing k-set contraction mappings},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {749--757},
     publisher = {mathdoc},
     volume = {Ser. 8, 59},
     number = {6},
     year = {1975},
     zbl = {0349.47053},
     mrnumber = {0482413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a23/}
}
TY  - JOUR
AU  - Singh, Kanhaya Lal
TI  - Two theorems characterizing increasing k-set contraction mappings
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1975
SP  - 749
EP  - 757
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a23/
LA  - en
ID  - RLINA_1975_8_59_6_a23
ER  - 
%0 Journal Article
%A Singh, Kanhaya Lal
%T Two theorems characterizing increasing k-set contraction mappings
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1975
%P 749-757
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a23/
%G en
%F RLINA_1975_8_59_6_a23
Singh, Kanhaya Lal. Two theorems characterizing increasing k-set contraction mappings. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 59 (1975) no. 6, pp. 749-757. http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a23/

[1] C. Kuratowskii (1966) - Topology, Volume 1 (Section 34), Academic Press. New York. | MR

[2] G. Darbo (1955) - Punti Uniti in Transformazioni a Codomino Noncompatto, «Rend. Sem. Mat. Padova», 24, 84-92. | fulltext EuDML | MR | Zbl

[3] M. Furi and A. Vignoli (1970) - On $\alpha$-nonexpansive Mappings and Fixed point Theorems, «Accad. Naz. Lincei», (8), 48, 131-134. | MR

[4] R. D. Nussbaum (1969) - k-set Contractions, Ph. D. Dissertation, University of Chicago.

[5] B. N. Sadovskii (1972) - Limit Compact and Condensing Operators, «Russian Mathematical Survey», 27, 85-155. | MR | Zbl

[6] W. V. Petryshyn (1975) - Fredholm Alternatives for nonlinear k-ball Contraction Mappings with Applications, «Jour. Differential Equations», 17, 82-95. | DOI | MR

[7] W. V. Petryshyn (1973) - Fixed point Theorems for Various class of 1-set Contractions and 1-ball Contractions in Banach spaces, «Trans. Amer. Math. Soc.», 182, 323-352. | DOI | MR

[8] W. V. Petryshyn (1971) - Structure of Fixed point sets of k-set Contractions, «Arch. Rat. Mech. and Anal.», 40, 312-328. | DOI | MR | Zbl

[9] Sadayuki Yamamuro (1965) - Monotone Mappings in Topological Linear Spaces, «Jour. Australian Math. Soc.», 5, 25-35. | MR

[10] R. D. Nussbaum (1971) - Estimates of the Number of Solutions of Operatr Equations, «Applicable Analysis», 1, 183-200. | DOI | MR

[11] Sadayuki Yamamuro (1974) - Differential Calculus in Topological Linear Spaces, Lecture Note No. 374, Spinger Verlag. | MR | Zbl

[12] K. L. Singh (1968) - Contraction Mappings and Fixed Point Theorems, «Annales de la Société Scientifique de Bruxelles», 83, 34-44. | MR | Zbl

[13] K. L. Singh (1969) - A remark on a Paper by V. V. Bryant, «Amer. Math. Montly», 89.

[14] K. L. Singh (1969) - Some Fixed Theorems, «Riv. Mat. Univ. Parma», (2) 10, 13-21. | MR

[15] K. L. Singh (1969) - Some Further Extensions of Banach's Contraction Principles, «Riv. Mat. Univ. Parma» (2), 10, 139-155. | MR | Zbl

[16] K. L. Singh (1970) - Nonexpansive Mappings in Banach Spaces, II, «Bull. Math. Rumania», 14 (2), 237-246. | MR

[17] K. L. Singh - Fixed Point Theorems in Banach Spaces, I, Banaras Hindu University Scientific Journal (In Press).

[18] K. L. Singh and S. Srivastava (1971) - On Some Fixed Point Theorems, «Nanta Mathematica» (In Press). | MR

[19] K. L. Singh, S. Ded and B. Gardner (1971) - On Contraction Mappings, «Rivista Mat. Univ. Parma», (2), 12. | MR

[20] K. L. Singh and B. P. Singh - Proximate Solutions of Nonlinear Functional Equations and a Converse o f Banach's Contraction Principle, «Bharat Ganita» (Submitted). | MR

[21] K. L. Singh and B. P. Singh - Quasi-nonexpansive Mappings and Common Fixed Points, «Boll. Un. Mat. Ital.» (Submitted). | MR

[22] K. L. Singh (1972) - Fixed Point Theorems for Densifying Mappings, I, «The Math. Students», 40, (3), 283-288. | MR

[23] K. L. Singh - Fixed Point Theorems for Densifying Mappings, «Riv. Mat. Univ. Parma» (accepted). | MR

[24] K. L. Singh - Construction of Fixed Point Theorems for Densifying Mappings, «Riv. Mat. Univ. Parma» (accepted). | MR

[25] K. L. Singh - Eigenvalues of Densifying Mappings, «Accad. Naz. dei Lincei» (accepted). | MR

[26] K. L. Singh - Some Applications of Darbo's Theorems, «Bull. Math. Rumania» (submitted). | MR

[27] M. A. Krasnoselskii (1964) - Topological Methods for the study of Nonlinear Integral Equations, Pergamon Press, New York.

[28] M. M. Vainberg (1964) - Variational Methods for the study of Nonlinear Operator Equations, Holden—Day Publishing Co., San Francisco. | MR

[29] Andrej Granas (1961) - Introduction to the Topology of Function Spaces, Lecture Note, University of Chicago, Spring.

[30] K. L. Singh - An Invariance of Domain Theorem for Increasing Densifying Mappings, «Fundamenta Mathematica» (submitted).