Two theorems characterizing increasing k-set contraction mappings
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 59 (1975) no. 6, pp. 749-757 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

Vengono caratterizzati certi tipi di contrazioni, facendone fra l'altro applicazione per ritrovare alcuni risultati di Yamamuro [9].
@article{RLINA_1975_8_59_6_a23,
     author = {Singh, Kanhaya Lal},
     title = {Two theorems characterizing increasing k-set contraction mappings},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {749--757},
     year = {1975},
     volume = {Ser. 8, 59},
     number = {6},
     zbl = {0349.47053},
     mrnumber = {0482413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a23/}
}
TY  - JOUR
AU  - Singh, Kanhaya Lal
TI  - Two theorems characterizing increasing k-set contraction mappings
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1975
SP  - 749
EP  - 757
VL  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a23/
LA  - en
ID  - RLINA_1975_8_59_6_a23
ER  - 
%0 Journal Article
%A Singh, Kanhaya Lal
%T Two theorems characterizing increasing k-set contraction mappings
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1975
%P 749-757
%V 59
%N 6
%U http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a23/
%G en
%F RLINA_1975_8_59_6_a23
Singh, Kanhaya Lal. Two theorems characterizing increasing k-set contraction mappings. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 59 (1975) no. 6, pp. 749-757. http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a23/

[1] C. Kuratowskii (1966) - Topology, Volume 1 (Section 34), Academic Press. New York. | MR

[2] G. Darbo (1955) - Punti Uniti in Transformazioni a Codomino Noncompatto, «Rend. Sem. Mat. Padova», 24, 84-92. | fulltext EuDML | MR | Zbl

[3] M. Furi and A. Vignoli (1970) - On $\alpha$-nonexpansive Mappings and Fixed point Theorems, «Accad. Naz. Lincei», (8), 48, 131-134. | MR

[4] R. D. Nussbaum (1969) - k-set Contractions, Ph. D. Dissertation, University of Chicago.

[5] B. N. Sadovskii (1972) - Limit Compact and Condensing Operators, «Russian Mathematical Survey», 27, 85-155. | MR | Zbl

[6] W. V. Petryshyn (1975) - Fredholm Alternatives for nonlinear k-ball Contraction Mappings with Applications, «Jour. Differential Equations», 17, 82-95. | DOI | MR

[7] W. V. Petryshyn (1973) - Fixed point Theorems for Various class of 1-set Contractions and 1-ball Contractions in Banach spaces, «Trans. Amer. Math. Soc.», 182, 323-352. | DOI | MR

[8] W. V. Petryshyn (1971) - Structure of Fixed point sets of k-set Contractions, «Arch. Rat. Mech. and Anal.», 40, 312-328. | DOI | MR | Zbl

[9] Sadayuki Yamamuro (1965) - Monotone Mappings in Topological Linear Spaces, «Jour. Australian Math. Soc.», 5, 25-35. | MR

[10] R. D. Nussbaum (1971) - Estimates of the Number of Solutions of Operatr Equations, «Applicable Analysis», 1, 183-200. | DOI | MR

[11] Sadayuki Yamamuro (1974) - Differential Calculus in Topological Linear Spaces, Lecture Note No. 374, Spinger Verlag. | MR | Zbl

[12] K. L. Singh (1968) - Contraction Mappings and Fixed Point Theorems, «Annales de la Société Scientifique de Bruxelles», 83, 34-44. | MR | Zbl

[13] K. L. Singh (1969) - A remark on a Paper by V. V. Bryant, «Amer. Math. Montly», 89.

[14] K. L. Singh (1969) - Some Fixed Theorems, «Riv. Mat. Univ. Parma», (2) 10, 13-21. | MR

[15] K. L. Singh (1969) - Some Further Extensions of Banach's Contraction Principles, «Riv. Mat. Univ. Parma» (2), 10, 139-155. | MR | Zbl

[16] K. L. Singh (1970) - Nonexpansive Mappings in Banach Spaces, II, «Bull. Math. Rumania», 14 (2), 237-246. | MR

[17] K. L. Singh - Fixed Point Theorems in Banach Spaces, I, Banaras Hindu University Scientific Journal (In Press).

[18] K. L. Singh and S. Srivastava (1971) - On Some Fixed Point Theorems, «Nanta Mathematica» (In Press). | MR

[19] K. L. Singh, S. Ded and B. Gardner (1971) - On Contraction Mappings, «Rivista Mat. Univ. Parma», (2), 12. | MR

[20] K. L. Singh and B. P. Singh - Proximate Solutions of Nonlinear Functional Equations and a Converse o f Banach's Contraction Principle, «Bharat Ganita» (Submitted). | MR

[21] K. L. Singh and B. P. Singh - Quasi-nonexpansive Mappings and Common Fixed Points, «Boll. Un. Mat. Ital.» (Submitted). | MR

[22] K. L. Singh (1972) - Fixed Point Theorems for Densifying Mappings, I, «The Math. Students», 40, (3), 283-288. | MR

[23] K. L. Singh - Fixed Point Theorems for Densifying Mappings, «Riv. Mat. Univ. Parma» (accepted). | MR

[24] K. L. Singh - Construction of Fixed Point Theorems for Densifying Mappings, «Riv. Mat. Univ. Parma» (accepted). | MR

[25] K. L. Singh - Eigenvalues of Densifying Mappings, «Accad. Naz. dei Lincei» (accepted). | MR

[26] K. L. Singh - Some Applications of Darbo's Theorems, «Bull. Math. Rumania» (submitted). | MR

[27] M. A. Krasnoselskii (1964) - Topological Methods for the study of Nonlinear Integral Equations, Pergamon Press, New York.

[28] M. M. Vainberg (1964) - Variational Methods for the study of Nonlinear Operator Equations, Holden—Day Publishing Co., San Francisco. | MR

[29] Andrej Granas (1961) - Introduction to the Topology of Function Spaces, Lecture Note, University of Chicago, Spring.

[30] K. L. Singh - An Invariance of Domain Theorem for Increasing Densifying Mappings, «Fundamenta Mathematica» (submitted).