Nonoscillation theorems for forced second order non linear differential equations
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 59 (1975) no. 6, pp. 694-701.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Gli Autori provano alcuni nuovi criteri sufficienti, indipendenti da altri criteri da loro ottenuti in precedenza, perché gli integrali dell'equazione $(a(t) x^{\prime})^{\prime} + q(t) f(x) g(x^{\prime}) = r(t)$ siano tutti non oscillatori.
@article{RLINA_1975_8_59_6_a14,
     author = {Graef, John R. and Spikes, Paul W.},
     title = {Nonoscillation theorems for forced second order non linear differential equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {694--701},
     publisher = {mathdoc},
     volume = {Ser. 8, 59},
     number = {6},
     year = {1975},
     zbl = {0415.34033},
     mrnumber = {0486797},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a14/}
}
TY  - JOUR
AU  - Graef, John R.
AU  - Spikes, Paul W.
TI  - Nonoscillation theorems for forced second order non linear differential equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1975
SP  - 694
EP  - 701
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a14/
LA  - en
ID  - RLINA_1975_8_59_6_a14
ER  - 
%0 Journal Article
%A Graef, John R.
%A Spikes, Paul W.
%T Nonoscillation theorems for forced second order non linear differential equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1975
%P 694-701
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a14/
%G en
%F RLINA_1975_8_59_6_a14
Graef, John R.; Spikes, Paul W. Nonoscillation theorems for forced second order non linear differential equations. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 59 (1975) no. 6, pp. 694-701. http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a14/

[1] F. V. Atkinson (1955) - On second-order non-linear oscillations, «Pacific J. Math.», 5, 643-647. | MR | Zbl

[2] C. V. Coffman and J. S. W. Wong (1972) - Oscillation and non-oscillation of solutions of generalized Emden-Fowler equations, «Trans. Amer. Math. Soc.», 167, 399-434. | DOI | MR | Zbl

[3] C. V. Coffman and J. S. W. Wong (1972) - Oscillation and non-oscillation theorems for second order ordinary differential equations, «Funkcial. Ekvac.», 15, 119-130. | MR | Zbl

[4] H. E. Gollwitzee (1970) - Nonoscillation theorems for a nonlinear differential equation, «Proc. Amer. Math. Soc.», 26, 78-84. | DOI | MR

[5] J. R. Graef and P. W. Spikes (1974) - A nonoscillation result for second order ordinary differential equations, «Rend. Accad. Sci. fis. mat. Napoli» (4), 41, 3-12. | MR

[6] J. R. Graef and P. W. Spikes (1975) - Sufficient conditions for nonoscillation of a second order nonlinear differential equation, «Proc. Amer. Math. Soc.», 50, 289-292. | DOI | MR

[7] J. R. Graef and P. W. Spikes (1975) - Sufficient conditions for the equation $(a(t) x^{\prime})^{\prime} + h(t,x,x^{\prime}) + q(t) f(x,x^{\prime}) = e (t,x,x^{\prime})$ to be nonoscillatory, «Funkcial. Ekvac.», 18, 35-40. | MR | Zbl

[8] M. E. Hammett (1967) - Oscillation and nonoscillation theorems for nonhomogeneous linear differential equations of second order, Ph. D. Dissertation, Auburn University. | MR

[9] E. Hille (1948) - Nonoscillation theorems, «Trans. Amer. Math. Soc.», 64, 234-252. | DOI | MR

[10] D. V. Izyumova (1966) - On the conditions for the oscillation and nonoscillation of solutions of nonlinear second-order differential equations, «Differencial'nye Uravnenija», 2, 1572-1586. | MR

[11] D. V. Izyumova and I. T. Kiguradze (1968) - Some remarks on solutions of the equation $u^{\prime\prime} + a(t)f(u) = 0$, «Differencial'nye Uravnenija», 4, 589-605. | MR

[12] I. V. Kamenev (1970) - Oscillations of solutions of nonlinear equations with multiplicatively separable right sides, «Differencial'nye Uravnenija», 6, 1510-1513. | MR

[13] M. S. Keener (1971) - On the solutions of certain linear non-homogeneous second-order differential equations, «Applicable Analysis», 1, 57-63. | DOI | MR | Zbl

[14] J. W. Macki and J. S. W. Wong (1968) - Oscillation of solutions to second order non linear differential equations, «Pacific J. Math.», 24, 111-117. | MR | Zbl

[15] R. A. Moore (1955) - The behavior of solutions of a linear differential equation of second order, «Pacific J. Math.», 5, 125-145. | MR | Zbl

[16] R. A. Moore and Z. Nehari (1959) - Nonoscillation theorems for a class of nonlinear differential equations, «Trans. Amer. Math. Soc.», 93, 30-52. | DOI | MR | Zbl

[17] Z. Nehari (1969) - A nonlinear oscillation problem, «J. Differential Eqs.», 5, 452-460. | DOI | MR | Zbl