Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1975_8_59_6_a14, author = {Graef, John R. and Spikes, Paul W.}, title = {Nonoscillation theorems for forced second order non linear differential equations}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {694--701}, publisher = {mathdoc}, volume = {Ser. 8, 59}, number = {6}, year = {1975}, zbl = {0415.34033}, mrnumber = {0486797}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a14/} }
TY - JOUR AU - Graef, John R. AU - Spikes, Paul W. TI - Nonoscillation theorems for forced second order non linear differential equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1975 SP - 694 EP - 701 VL - 59 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a14/ LA - en ID - RLINA_1975_8_59_6_a14 ER -
%0 Journal Article %A Graef, John R. %A Spikes, Paul W. %T Nonoscillation theorems for forced second order non linear differential equations %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1975 %P 694-701 %V 59 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a14/ %G en %F RLINA_1975_8_59_6_a14
Graef, John R.; Spikes, Paul W. Nonoscillation theorems for forced second order non linear differential equations. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 59 (1975) no. 6, pp. 694-701. http://geodesic.mathdoc.fr/item/RLINA_1975_8_59_6_a14/
[1] On second-order non-linear oscillations, «Pacific J. Math.», 5, 643-647. | MR | Zbl
(1955) -[2] Oscillation and non-oscillation of solutions of generalized Emden-Fowler equations, «Trans. Amer. Math. Soc.», 167, 399-434. | DOI | MR | Zbl
and (1972) -[3] Oscillation and non-oscillation theorems for second order ordinary differential equations, «Funkcial. Ekvac.», 15, 119-130. | MR | Zbl
and (1972) -[4] Nonoscillation theorems for a nonlinear differential equation, «Proc. Amer. Math. Soc.», 26, 78-84. | DOI | MR
(1970) -[5] A nonoscillation result for second order ordinary differential equations, «Rend. Accad. Sci. fis. mat. Napoli» (4), 41, 3-12. | MR
and (1974) -[6] Sufficient conditions for nonoscillation of a second order nonlinear differential equation, «Proc. Amer. Math. Soc.», 50, 289-292. | DOI | MR
and (1975) -[7] Sufficient conditions for the equation $(a(t) x^{\prime})^{\prime} + h(t,x,x^{\prime}) + q(t) f(x,x^{\prime}) = e (t,x,x^{\prime})$ to be nonoscillatory, «Funkcial. Ekvac.», 18, 35-40. | MR | Zbl
and (1975) -[8] Oscillation and nonoscillation theorems for nonhomogeneous linear differential equations of second order, Ph. D. Dissertation, Auburn University. | MR
(1967) -[9] Nonoscillation theorems, «Trans. Amer. Math. Soc.», 64, 234-252. | DOI | MR
(1948) -[10] On the conditions for the oscillation and nonoscillation of solutions of nonlinear second-order differential equations, «Differencial'nye Uravnenija», 2, 1572-1586. | MR
(1966) -[11] Some remarks on solutions of the equation $u^{\prime\prime} + a(t)f(u) = 0$, «Differencial'nye Uravnenija», 4, 589-605. | MR
and (1968) -[12] Oscillations of solutions of nonlinear equations with multiplicatively separable right sides, «Differencial'nye Uravnenija», 6, 1510-1513. | MR
(1970) -[13] On the solutions of certain linear non-homogeneous second-order differential equations, «Applicable Analysis», 1, 57-63. | DOI | MR | Zbl
(1971) -[14] Oscillation of solutions to second order non linear differential equations, «Pacific J. Math.», 24, 111-117. | MR | Zbl
and (1968) -[15] The behavior of solutions of a linear differential equation of second order, «Pacific J. Math.», 5, 125-145. | MR | Zbl
(1955) -[16] Nonoscillation theorems for a class of nonlinear differential equations, «Trans. Amer. Math. Soc.», 93, 30-52. | DOI | MR | Zbl
and (1959) -[17] Z. Nehari (1969) - A nonlinear oscillation problem, «J. Differential Eqs.», 5, 452-460. | DOI | MR | Zbl