@article{RLINA_1975_8_58_5_a3,
author = {Reissig, Rolf},
title = {Contractive mappings and periodically perturbed non-conservative systems},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {696--702},
year = {1975},
volume = {Ser. 8, 58},
number = {5},
zbl = {0344.34033},
mrnumber = {0430423},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLINA_1975_8_58_5_a3/}
}
TY - JOUR AU - Reissig, Rolf TI - Contractive mappings and periodically perturbed non-conservative systems JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1975 SP - 696 EP - 702 VL - 58 IS - 5 UR - http://geodesic.mathdoc.fr/item/RLINA_1975_8_58_5_a3/ LA - en ID - RLINA_1975_8_58_5_a3 ER -
%0 Journal Article %A Reissig, Rolf %T Contractive mappings and periodically perturbed non-conservative systems %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1975 %P 696-702 %V 58 %N 5 %U http://geodesic.mathdoc.fr/item/RLINA_1975_8_58_5_a3/ %G en %F RLINA_1975_8_58_5_a3
Reissig, Rolf. Contractive mappings and periodically perturbed non-conservative systems. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 58 (1975) no. 5, pp. 696-702. http://geodesic.mathdoc.fr/item/RLINA_1975_8_58_5_a3/
[1] (1973) - An existence theorem for periodically perturbed conservative systems, «Michigan Math. J.», 20, 385-392. | MR | Zbl
[2] and (1969) - Real and abstract analysis, Berlin. | MR | Zbl
[3] (1974) - Periodically perturbed conservative systems, «J. Differential Equations», 16, 506-514. | DOI | MR | Zbl
[4] (1972) - Application of a lemma on bilinear forms to a problem in nonlinear oscillations, «Proc. Amer. Math. Soc.», 33, 89-94. | DOI | MR | Zbl
[5] and (1969) - On periodically perturbed conservative systems, «Michigan Math. J.», 16, 193-200. | MR | Zbl
[6] (1970) - On Poincare's perturbation theorem and a theorem of W. S. Loud, «J. Differential Equations», 7, 34-53. | DOI | MR | Zbl
[7] (1967) - Periodic solutions of nonlinear differential equations of Duffing type, Proc. U. S., Japan Sem. on Diff. and Funct. Equations, New York, 199-224. | MR | Zbl
[8] (1974) - Contractive mappings and periodically perturbed conservative systems, Sém. de Math. Appl. et Méc. Mensuel, rapport 80, Louvain. | Zbl
[9] (1964) - Variational methods for the study of nonlinear operators, San Francisco. | MR | Zbl