Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1971_8_51_3-4_a6, author = {Verma, Arun}, title = {Hahn polynomials}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {168--176}, publisher = {mathdoc}, volume = {Ser. 8, 51}, number = {3-4}, year = {1971}, zbl = {0239.33021}, mrnumber = {0308459}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1971_8_51_3-4_a6/} }
TY - JOUR AU - Verma, Arun TI - Hahn polynomials JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1971 SP - 168 EP - 176 VL - 51 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1971_8_51_3-4_a6/ LA - en ID - RLINA_1971_8_51_3-4_a6 ER -
%0 Journal Article %A Verma, Arun %T Hahn polynomials %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1971 %P 168-176 %V 51 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1971_8_51_3-4_a6/ %G en %F RLINA_1971_8_51_3-4_a6
Verma, Arun. Hahn polynomials. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 51 (1971) no. 3-4, pp. 168-176. http://geodesic.mathdoc.fr/item/RLINA_1971_8_51_3-4_a6/
[1] Orthogonal polynomials of hypergeometric type. «Duke Math. Jour.», 33, 109-122 (1966). | MR | Zbl
,[2] A class of hypergeometric polynomials. «Annali Mat. Pura Appl.», 75, 95-120 (1967). | DOI | MR | Zbl
,[3] Some relations involving Jacobi polynomials. «Portugaliae Math.», 15, 73-77 (1956). | fulltext EuDML | MR | Zbl
,[4] Some properties of a certain set of polynomials. «Tohoku Math. Jour.», 37, 23-28 (1933). | Zbl
,[5] The polynomials $F_{n}(x)$. «Annales of Math.», 35, 767-775 (1944). | DOI | MR | Zbl
,[6] Higher trancendental functions. Vol. II. McGraw Hill (1955).
et al.,[7] Uber orthogonal Polynome, die q-Differenzengecic-hungen genugen. «Math. Nacher.», 2, 4-34 (1949). | DOI | MR
,[8] A new series transform with applications to Bessel, Legendre, Tchebycheff polynomials. «Duke Math. Jour.», 31, 325-334 (1964). | MR | Zbl
,[9] Special functions. MacMillan Co., New York 1960. | MR | Zbl
,[10] Some properties of $_{3}F_{2}(-n,-n-1,1 \, ; \,p,v)$. «Duke Math. Jour.», 6, 108-119 (1940). | MR | Zbl
,[11] A class of expansions of G-functions and the Laplace transform. «Math. Comp.», 19, 664-666 (1965). | Zbl
,[12] On the finite difference analogue of Rodrigue's formula, «Amer. Math. Monthly», 59, 163-168 (1952). | DOI | MR | Zbl
and ,