@article{RLINA_1967_8_42_6_a7,
author = {Zamfirescu, Tudor},
title = {Sur les familles continues de courbes {Nota} {I}},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {771--774},
year = {1967},
volume = {Ser. 8, 42},
number = {6},
zbl = {0173.24501},
url = {http://geodesic.mathdoc.fr/item/RLINA_1967_8_42_6_a7/}
}
TY - JOUR AU - Zamfirescu, Tudor TI - Sur les familles continues de courbes Nota I JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1967 SP - 771 EP - 774 VL - 42 IS - 6 UR - http://geodesic.mathdoc.fr/item/RLINA_1967_8_42_6_a7/ ID - RLINA_1967_8_42_6_a7 ER -
%0 Journal Article %A Zamfirescu, Tudor %T Sur les familles continues de courbes Nota I %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1967 %P 771-774 %V 42 %N 6 %U http://geodesic.mathdoc.fr/item/RLINA_1967_8_42_6_a7/ %F RLINA_1967_8_42_6_a7
Zamfirescu, Tudor. Sur les familles continues de courbes Nota I. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 42 (1967) no. 6, pp. 771-774. http://geodesic.mathdoc.fr/item/RLINA_1967_8_42_6_a7/
[1] , Measures of symmetry for convex sets, «Proc. Symp. Pure Math.», 7 (Convexity), 233-270 (1963). | DOI | MR
[2] , Continuous families of curves, «Can. J. Math.», 18, 529-537 (1966). | DOI | MR | Zbl
[3] , Convex bodies associated with a convex body, «Proc. Amer. Math. Soc.», 2, 781-793 (1951). | DOI | MR | Zbl
[4] et , Planar line families I, II, «Proc. Amer. Math. Soc.», 4, 226-233; 341-349 (1953). | DOI | MR | Zbl
[5] , On planar continuous families of curves, «Can. J. Math.» (à paraitre). | DOI | MR | Zbl
[6] , Bissection des ensembles plans convexes par des droites, «Wiadom. Mat., Ser. 2», 2, 228-234 (1959) (en polonais). | MR
[7] , Über konvexe Gebilde. I, II, III, «Monatsch. Math.», 30, 87-102 (1920); 31, 25-56 (1921); 32, 107-138 (1922). | DOI | MR