An application of the extension theorem to a control problem
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 42 (1967) no. 6, pp. 766-770.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questo lavoro si studia il problema della stabilità assoluta di un sistema di controllo non lineare sotto opportune ipotesi sulla nonlinearità e la sua derivata prima. Mediante l'uso del teorema di estensione e di una funzione di Liapunov di nuovo tipo si ricavano condizioni sufficienti per la stabilità assoluta.
@article{RLINA_1967_8_42_6_a6,
     author = {Szeg\"o, Giorgio P.},
     title = {An application of the extension theorem to a control problem},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {766--770},
     publisher = {mathdoc},
     volume = {Ser. 8, 42},
     number = {6},
     year = {1967},
     zbl = {0183.16301},
     mrnumber = {0230999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1967_8_42_6_a6/}
}
TY  - JOUR
AU  - Szegö, Giorgio P.
TI  - An application of the extension theorem to a control problem
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1967
SP  - 766
EP  - 770
VL  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1967_8_42_6_a6/
LA  - en
ID  - RLINA_1967_8_42_6_a6
ER  - 
%0 Journal Article
%A Szegö, Giorgio P.
%T An application of the extension theorem to a control problem
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1967
%P 766-770
%V 42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1967_8_42_6_a6/
%G en
%F RLINA_1967_8_42_6_a6
Szegö, Giorgio P. An application of the extension theorem to a control problem. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 42 (1967) no. 6, pp. 766-770. http://geodesic.mathdoc.fr/item/RLINA_1967_8_42_6_a6/

[1] N. P. Bhatia and G. P. Szegö, An extension theorem for asymptotic stability and its applications to a control problem, in Proc. International Symposium on Diff. Equations and Dynamical Systems, Puerto Rico (1965). | MR

[2] G. P. Szegö, New theorems on stability and attraction and their application to a control problem, in Proc. NATO Advanced Study Institute on Stability Problems of solutions of Differential Equations, Padua, Sept. 1965, published by Oderisi, Gubbio (1966). | MR

[3] N. P. Bhatia and G. P. Szegö, Dynamical Systems: Stability theory and application, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York (1967). | MR | Zbl

[4] V. M. Popov, Hiperstabilitatea Sistemelor Automate, Editura Academiei Republicii Socialiste Romania, Bucarest (1966). | MR

[5] C. Corduneanu, Sur une équation intégrale non-linéaire, «Anal. Sti. Unit. “A. Cuza”, Iasi», Sct. 1, 9, 369-375 (1963). | MR | Zbl

[6] V. A. Iakubovich, Frequency-domain condition of asymptotical stability of nonlinear control systems, in Proc. Joint Conference on Application of Stability Theory and Analytical Mechanics, Kazan (1964).

[7] K. S. Narendra and C. P. Neumann, Stability of a Class of Differential Equations with a Single Monotone Increasing Nonlinearity, in Tech. Rept. 497 (1965), Cruft Lab., Harvard University, Cambridge, Mass. | MR

[8] A. I. Lur'E, Some Nonlinear Problems in the Theory of Automatic Control, Moscow (1951). | MR

[9] V. A. Iakubovich, The Solution of Certain Matrix Inequalities Encountered in the Theory of Automatic Control, «D.A.N. SSSR», 143 (1962). | MR

[10] R. E. Kalman, Liapunov Functions for the Problem of Lur'e in Automatic Control, «Proc. Nat. Acad. Sci. U.S.», 49 (1963). | DOI | MR | Zbl

[11] G. P. Szegö, Asymptotic Behavior of Time-varying, Forced, Non—linear Control Systems, to appear. | MR

[12] K. S. Narendra and C. P. Neumann, Stability of a Class of Differential Equations with a Single Nonlinearity, in Tech. Rept. 468 (1965). Cruft Lab., Harvard University, Cambridge, Mass. | MR

[13] V. I. Zubov, Methods of A. M. Liapunov and their application, Noordhoff, Groningen, Holland (1964). | MR

[14] P. Hartman, Ordinary Differential Equations, New York, New York (1964). | MR | Zbl