Perturbative methods in Celestial Mechanics and the roots of Quantum Mechanics: a historical note
La Matematica nella società e nella cultura, Série 1, Tome 8 (2015) no. 2, pp. 191-224.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{RIUMI_2015_1_8_2_a1,
     author = {Efthymiopoulos, Christos},
     title = {Perturbative methods in {Celestial} {Mechanics} and the roots of {Quantum} {Mechanics:} a historical note},
     journal = {La Matematica nella societ\`a e nella cultura},
     pages = {191--224},
     publisher = {mathdoc},
     volume = {Ser. 1, 8},
     number = {2},
     year = {2015},
     zbl = {1219.81004},
     mrnumber = {3445577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_2_a1/}
}
TY  - JOUR
AU  - Efthymiopoulos, Christos
TI  - Perturbative methods in Celestial Mechanics and the roots of Quantum Mechanics: a historical note
JO  - La Matematica nella società e nella cultura
PY  - 2015
SP  - 191
EP  - 224
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_2_a1/
LA  - en
ID  - RIUMI_2015_1_8_2_a1
ER  - 
%0 Journal Article
%A Efthymiopoulos, Christos
%T Perturbative methods in Celestial Mechanics and the roots of Quantum Mechanics: a historical note
%J La Matematica nella società e nella cultura
%D 2015
%P 191-224
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_2_a1/
%G en
%F RIUMI_2015_1_8_2_a1
Efthymiopoulos, Christos. Perturbative methods in Celestial Mechanics and the roots of Quantum Mechanics: a historical note. La Matematica nella società e nella cultura, Série 1, Tome 8 (2015) no. 2, pp. 191-224. http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_2_a1/

[1] Aitchison, I., Macmanus, D.A., and Snyder, T.M., 2004, Understanding Heisenberg's `magical' paper of July 1925: a new look at the calculational details, American J. Phys. 72, 1370. | DOI | MR | Zbl

[2] https://www.aip.org/history/heisenberg/p07.htm

[3] Ali, M.K., 1985, The quantum normal form and its equivalents, J. Math. Phys. 26, 2565. | DOI | MR

[4] Arnold, V.I., 1963, Small denominators and the problem of stability of motion in classical and celestial mechanics, Russ. Math. Surveys, 18, 9. | MR

[5] Berry, M., 1989, Quantum chaology, not quantum chaos, Phys. Scr. 40, 335. | DOI | MR | Zbl

[6] Birkhoff, G., 1927, Dynamical Systems. American Mathematical Society. Providence. | MR | Zbl

[7] Boccaletti, D., and Pucacco, G., 1998 Theory of Orbits Vol II. Perturbative and Geometric Methods, Springer, Berlin. | DOI | MR | Zbl

[8] Born, M., 1935, Atomic Physics, Blackie & Son, Glasgow.

[9] Born, M., and Jordan, P., 1925, Zur Quantenmechanik, Zeitschrift für Physik 34, 858; Reprinted in translation in B. L. van der Waerden (Ed.), Sources of Quantum Mechanics, North-Holland, Amsterdam, 1967.

[10] Born, M., Heisenberg, W., and Jordan, P., 1926, Zur Quantenmechanik II, Zeitschrift für Physik 35, 557; Reprinted in translation in B. L. van der Waerden (Ed.), Sources of Quantum Mechanics, North-Holland, Amsterdam, 1967.

[11] Bucher, M., 2008, The rise and premature fall of the old quantum theory, ArXiv. 0802.1366.

[12] Carati, A., and Galgani, L., Fondamenti della meccanica quantistica: uno studio storico critico. electronic page http:/www.mat.unimi.it/users/galgani

[13] Christodoulidi, H., and Efthymiopoulos, C., 2013, Low-dimensional q-Tori in FPU Lattices: Dynamics and Localization Properties, Physica D 261, 92. | DOI | MR | Zbl

[14] Contopoulos, G., 1960, A third integral of motion in a galaxy, Z. Astrophys., 49, 273. | MR | Zbl

[15] Contopoulos, G., 1966, Tables of the third integral, Astrophys. J. Suppl., 13, 503.

[16] Contopoulos, G., 2002, Order and Chaos in Dynamical Astronomy, Springer, Berlin. | DOI | MR | Zbl

[17] Crehan, P, 1990, The proper quantum analogue of the Birkhoff-Gustavson method of normal forms, J. Phys. A Math. Gen. 23, 5815. | MR | Zbl

[18] Deprit, A., 1969, Canonical Transformations Depending on a Small Parameter, Cel. Mech., 1, 12. | DOI | MR | Zbl

[19] Dirac, P.A.M., 1926, On the theory of Quantum Mechanics, Proc. Roy. Soc. A 109, 642. | MR | Zbl

[20] Dirac, P.A.M., 1930, The Principles of Quantum Mechanics, Oxford Science Publications. | MR | Zbl

[21] Dyson, F.J., 1949, The Radiation Theories of Tomonaga, Schwinger, and Feynman, Phys. Rev. 75, 486. | MR | Zbl

[22] Dyson, F.J., 1952, Divergence of Perturbation Theory in Quantum Electrodynamics, Phys. Rev. 85, 631. | MR | Zbl

[23] Attempts to make quantum electrodynamics into a completely solvable theory http://www.webofstories.com/play/freeman.dyson/92

[24] Eckhardt, B., 1986, Birkhoff-Gustavson normal form in classical and quantum mechanics, J. Phys. A Math. Gen. 19, 2961. | MR | Zbl

[25] Efthymiopoulos, C., 2012, Canonical perturbation theory; stability and diffusion in Hamiltonian systems: applications in dynamical astronomy, in P.M. Cincotta, C.M. Giordano, and C. Efthymiopoulos (Eds), Third La Plata International School on Astronomy and Geophysics, Asociación Argentina de Astronomía, Workshop Series, Vol. 3, p.3-146.

[26] Efthymiopoulos, C., and Contopoulos, G., 2006, Chaos in Bohmian Quantum Mechanics, J. Phys. A. Math Gen 39, 1819. | DOI | MR | Zbl

[27] Eliasson, L., 1996, Absolutely Convergent Series Expansions for Quasi Periodic Motions, Math. Phys. Electron. J. 2, 1. | fulltext EuDML | MR | Zbl

[28] Giorgilli, A, 1998, Small denominators and exponential stability: from Poincaré to the present time, Rend. Sem. Mat. Fis. Milano, LXVIII, 19. | DOI | MR | Zbl

[29] Gustavson, F.G., 1966, On Constructing Formal Integrals of a Hamiltonian System. Near an Equilibrium Point, Astron. J. 71, 670.

[30] Gutzwiller, M.C., 1990, Chaos in Classical and Quantum Mechanics, Springer, New York. | DOI | MR | Zbl

[31] Hamilton, W.R., 1834, On a general method of dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function, Phil. Transactions, Part 2, pp. 247-308 (Mathematical Papers 2, 103).

[32] Heisenberg, W., 1925, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik 33, 879.

[33] Hénon, M., and Heiles, C., 1964, The applicability of the third integral of motion: Some numerical experiments, Astron. J. 69, 73. | DOI | MR

[34] Hori, G.I., 1966, Theory of General Perturbation with Unspecified Canonical Variables, Publ. Astron. Soc. Japan 18, 287.

[35] Jackson, J.D., 1962, Classical Electrodynamics, John Wiley and Son. | MR

[36] Kolmogorov, A.N., 1954, On the preservation of quasi-periodic motions under a small variation of Hamilton's function, Dokl. Akad. Nauk SSSR, 98, 527. | MR

[37] Lichtenberg, A.J., and Lieberman, M.A., 1992, Regular and Chaotic Dynamics, Springer, New York. | DOI | MR | Zbl

[38] Lynden-Bell, D., private communication.

[39] Messiah, A., 1961, Quantum Mechanics, Dover Publications.

[40] Moser, J., 1962, On Invariant Curves of Area-Preserving Mappings of an Annulus, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl II, 1-20. | MR | Zbl

[41] Nikolaev, A.S., 1996, On the diagonalization of quantum Birkhoff-Gustavson normal form, J. Math. Phys. 37, 2643. | DOI | MR | Zbl

[42] Poincaré, H., 1892, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Paris. | MR

[43] Robnik, M., 1984, The algebraic quantisation of the Birkhoff-Gustavson normal form, J. Phys. A Math. Gen. 17, 109. | MR | Zbl

[44] Schrödinger, E., 1926, An Undulatory Theory of the Mechanics of Atoms and Molecules, Phys. Rev. 28, 1049.

[45] Schrödinger, E., 1926, Über das Verhältnis der Heisenberg Born Jordanischen Quantenmechanik zu der meinen, Annalen der Physik 79, 45.

[46] Von Zeipel, H., 1916, Recherches sur le mouvement de petites planètes, Arkiv. Mat. Astron. Physik, II, Nos, 1,3,7,9, 12. | Zbl

[47] Weinberg, S., 1992, Dreams of a Final Theory, Pantheon Books, New York.

[48] Wood, W.R., and Ali, M.K., 1987, On the limitations of the Birkhoff-Gustavson normal form approach, J. Phys. A Math. Gen. 20, 351. | MR