Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RIUMI_2014_1_7_2_a0, author = {Celletti, Alessandra}, title = {Low-cost travels within the {Solar} system}, journal = {La Matematica nella societ\`a e nella cultura}, pages = {157--180}, publisher = {mathdoc}, volume = {Ser. 1, 7}, number = {2}, year = {2014}, zbl = {1344.70021}, mrnumber = {3476685}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RIUMI_2014_1_7_2_a0/} }
Celletti, Alessandra. Low-cost travels within the Solar system. La Matematica nella società e nella cultura, Série 1, Tome 7 (2014) no. 2, pp. 157-180. http://geodesic.mathdoc.fr/item/RIUMI_2014_1_7_2_a0/
[1] Qualitative and analytical results of the bifurcation thresholds to halo orbits, accepted for publication in Annali di Matematica Pura ed Applicata (2015). | DOI | MR | Zbl
, , , ,[2] Stability and Chaos in Celestial Mechanics, Springer-Verlag, Berlin; published in association with Praxis Publishing Ltd., Chichester, ISBN: 978-3-540-85145-5 (2010). | DOI | MR | Zbl
,[3] Lissajous and Halo orbits in the restricted three-body problem, accepted for publication in J. Nonlinear Science (2015). | DOI | MR | Zbl
, , ,[4] Low energy transit orbits in the restricted three-body problem, SIAM J. Appl. Math. 16, n. 4, 732-746 (1968). | DOI | MR | Zbl
,[5] On the ultimate behavior of orbits with respect to an unstable critical point. I. Oscillating, asymptotic, and capture orbits, J. Diff. Eq. 5, 136-158 (1969). | DOI | MR | Zbl
,[6] Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics 38, American Mathematical Society, Rhode Island (1978). | MR | Zbl
,[7] Considerationes de motu corporum coelestium. Novi commentarii academiae scientiarum Petropolitanae 10, 544-558 (1764) (read at Berlin in 1762). See also: Opera Omnia, s. 2, 25, 246-257.
,[8] The control and use of libration-point satellites, Ph.D. dissertation, Dept. of Aeronautics and Astronautics, Stanford University, Stanford CA, USA (1968).
,[9] Quasi-periodic orbits about the translunar libration point, Cel. Mech. 7, 458 (1973). | Zbl
, ,[10] Space Manifold Dynamics, in ``Celestial Mechanics'', A. Celletti ed., EOLSS-UNESCO publ., ISBN 978-1-78021-519-8 (2015).
, ,[11] Study refinement of semi-analytical Halo orbit theory, ESOC Contract 8625/89/D/MD(SC), Final Report (1991).
, , , ,[12] The dynamics around the collinear equilibrium points of the RTBP, Physica D 157, 283-321 (2001). | DOI | MR | Zbl
, ,[13] Periodic orbits emanating from a resonant equilibrium, Cel. Mech. 1, 437- 466 (1970). | DOI | MR | Zbl
,[14] Die Erreichbarkeit der Himmelskörper, Verlag Oldenbourg, München (1925).
,[15] Dynamics in the center manifold of the collinear points of the restricted three body problem, Physica D, 132, 189-213 (1999). | DOI | MR | Zbl
, ,[16] Astronomia nova seu physica coelestis tradita commentariis de motibus stellæ, Heidelberg, Voegelin (1609).
,[17] Heteroclinic connections between periodic orbits and resonance transitions in Celestial Mechanics, Chaos 10, n. 2, 427- 469 (2000). | DOI | MR | Zbl
, , , ,[18] Essai sur le problème des trois corps, Prix de l'Académie royale des sciences de Paris, tome IX (1772).
,[19] On the generalization of a theorem by A. Liapounoff, Comm. Pure Appl. Math. XI, 257-271 (1958). | DOI | MR | Zbl
,[20] Solar system dynamics, Cambridge University Press (1999). | MR | Zbl
, ,[21] NASA/JPL Keplerian elements, available on http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt
[22] Analytic construction of periodic orbits about the collinear points, Celestial Mechanics 22, 241-253 (1980). | DOI | MR | Zbl
,