Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RIUMI_2012_1_5_3_a1, author = {Fanti, Giulia and Mascolo, Elvira}, title = {Nikolaj {Nikolaevich} {Bogolyubov} e il {Calcolo} delle {Variazioni}}, journal = {La Matematica nella societ\`a e nella cultura}, pages = {361--397}, publisher = {mathdoc}, volume = {Ser. 1, 5}, number = {3}, year = {2012}, zbl = {1391.01019}, mrnumber = {3113701}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RIUMI_2012_1_5_3_a1/} }
TY - JOUR AU - Fanti, Giulia AU - Mascolo, Elvira TI - Nikolaj Nikolaevich Bogolyubov e il Calcolo delle Variazioni JO - La Matematica nella società e nella cultura PY - 2012 SP - 361 EP - 397 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RIUMI_2012_1_5_3_a1/ LA - it ID - RIUMI_2012_1_5_3_a1 ER -
Fanti, Giulia; Mascolo, Elvira. Nikolaj Nikolaevich Bogolyubov e il Calcolo delle Variazioni. La Matematica nella società e nella cultura, Série 1, Tome 5 (2012) no. 3, pp. 361-397. http://geodesic.mathdoc.fr/item/RIUMI_2012_1_5_3_a1/
[1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. and Anal., 63 (1977), 337-403. | DOI | MR | Zbl
,[2] N. N. Bogolyubov. Life and Work, Dubna, (1996). | Zbl
,[3] Sur quelques méthodes nouvelles dans le Calcul des Variations, Ann. Mat. Pura e Applicata, 4, Ann. Mat. Pura Appl., 7, no. 1 (1929), 249-271. | DOI | MR
,[4] Sur l'application des méthodes directes à quelques problèmes du Calcul des Variations, Ann. Mat. Pura Appl., 9, no. 1 (1931), 195-241. | DOI | MR | Zbl
,[5] Semicontinuity, relaxation and integral representation in the calculus of variation, Pitman Research Notes in Mathematics Series, Longman (1989). | MR | Zbl
,[6] Problemi di Semicontinuità e Rilassamento nel Calcolo delle Variazioni, Quaderni dell'Unione Matematica Italiana 39, Pitagora Editrice (Bologna, 1995).
,[7] Introduction to the Calculus of Variations, Imperial College Press, (2009).
,[8] A Bogolyubov-type theorem with a nonconvex constraint in Banach spaces, SIAM J. Control Optim., 43, no. 2 (2004), 466-476. | DOI | MR | Zbl
- - ,[9] Analyse convexe et problèmes variationnels, Collection ètudes Mathématiques. Dunod; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974. | MR
- ,[10] Equilibrium of bars, Journal of elasticity, 5 (1975). | DOI | MR | Zbl
,[11] Nikolai Nikolaevich Bogolyubov (obituary), Russian Math. Surveys, 47 (1992). | DOI | MR
- - - - - - - ,[12] Metodi diretti nel Calcolo delle Variazioni, Unione Matematica Italiana (1994). | MR
,[13] Theory of extremal problems, Translated from the Russian by Karol Makowski. Studies in Mathematics and its Applications, 6. North-Holland Publishing Co. Amsterdam-New York, (1979). | MR | Zbl
- ,[14] On the work of Nikolai Nikolaevich Bogolyubov in the theory of almost periodic functions, Russian Math. Surveys, 49 (1994). | DOI | MR | Zbl
,[15] Nikolai Nikolaevich Bogolyubov (On his 80th birthday), Russian Math. Surveys, 44 (1989). | DOI | MR
- - ,[16] Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessità, Rendiconti di Matematica, 2 (1980). | Zbl
,[17] Existence theorems for non convex problems, Jornal de Mathematique Pure et Appl., 62 (1982), 349-359. | MR | Zbl
- ,[18] Nikolai Nikolaevich Bogolyubov (on the occasion of his fiftieth birthday), Soviet Physics Uspekhi, 69 (1959). | MR
- ,[19] A theorem of Bogolyubov with constraints generated by a second-order evolutionary control system, (Russian) Izv. Ross. Akad. Nauk Ser. Mat., 67, no. 5 (2003) 177-206; translation in Izv. Math., 67, no. 5 (2003) 1031-1060. | DOI | MR | Zbl
,[20] Bogolyubov's theorem under constraints generated by a lower semicontinuous differential inclusion, (Russian) Mat. Sb., 196, no. 2 (2005), 117-138; translation in Sb. Math., 196, no. 1-2 (2005) 263-285. | DOI | MR | Zbl
,[21] Fondamenti del Calcolo delle Variazioni,, Zanichelli, Vol. 1 (1921) e Vol. 2 (1923). | MR
,[22] N.N. Bogolyubov and mathematics, Russian Math. Surveys, 56 (2001). | DOI | MR
,[23] Bogolyubov's ``edge of the wedge'' theorem, its development and applications, Russian Math. Surveys, 49 (1994). | DOI | MR | Zbl
- - ,[24] Lower semicontinuity and relaxation for integral functionals with p(x)- and p(x; u)-growth, Siberian Math. Journal, Volume 52, Number 6 (2011) 1108-1123. | DOI | MR | Zbl
,