Deconvoluzione di sistemi lineari con ingresso quantizzato: un approccio basato sulla teoria dell'informazione
La Matematica nella società e nella cultura, Série 1, Tome 5 (2012) no. 1, pp. 79-82.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{RIUMI_2012_1_5_1_a8,
     author = {Fosson, Sophie Marie},
     title = {Deconvoluzione di sistemi lineari con ingresso quantizzato: un approccio basato sulla teoria dell'informazione},
     journal = {La Matematica nella societ\`a e nella cultura},
     pages = {79--82},
     publisher = {mathdoc},
     volume = {Ser. 1, 5},
     number = {1},
     year = {2012},
     zbl = {0322.94005},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RIUMI_2012_1_5_1_a8/}
}
TY  - JOUR
AU  - Fosson, Sophie Marie
TI  - Deconvoluzione di sistemi lineari con ingresso quantizzato: un approccio basato sulla teoria dell'informazione
JO  - La Matematica nella società e nella cultura
PY  - 2012
SP  - 79
EP  - 82
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RIUMI_2012_1_5_1_a8/
LA  - it
ID  - RIUMI_2012_1_5_1_a8
ER  - 
%0 Journal Article
%A Fosson, Sophie Marie
%T Deconvoluzione di sistemi lineari con ingresso quantizzato: un approccio basato sulla teoria dell'informazione
%J La Matematica nella società e nella cultura
%D 2012
%P 79-82
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RIUMI_2012_1_5_1_a8/
%G it
%F RIUMI_2012_1_5_1_a8
Fosson, Sophie Marie. Deconvoluzione di sistemi lineari con ingresso quantizzato: un approccio basato sulla teoria dell'informazione. La Matematica nella società e nella cultura, Série 1, Tome 5 (2012) no. 1, pp. 79-82. http://geodesic.mathdoc.fr/item/RIUMI_2012_1_5_1_a8/

[1] Bahl L., Cocke J., Jelinek F. e Raviv J., Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Inf. Theory, IT-20 (1974), 284-287. | Zbl

[2] Fosson S.M., A decoding Approach to Fault Tolerant Control of Linear Systems with Quantized Disturbance Input, International Journal of Control, 84 (11) (2011), 1779-1795. | Zbl

[3] Stenflo O., Ergodic theorems for markov chains represented by iterated function systems, Bull. Polish Acad. Sci. Math., 49 (1) (2001), 27-43. | Zbl

[4] Tikhonov A.N. e Arsenin V.Y., Solutions of ill-posed problems, Winston and Sons (1977). | Zbl

[5] Richardson T. e Urbanke R., Modern Coding Theory, Cambridge University Press (2008). | Zbl