Matematica e filosofia della matematica: presente e futuro
La Matematica nella società e nella cultura, Série 1, Tome 3 (2010) no. 2, pp. 201-234.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questo articolo si sostiene che in futuro la matematica si svilupperà lungo linee sostanzialmente differenti da quelle secondo cui si è sviluppata a partire dalla seconda metà dell'Ottocento. Questo richiederà un cambiamento nella filosofia della matematica che è stata alla base di tale sviluppo. Perciò nell'articolo si propone una filosofia della matematica alternativa.
In this paper it is claimed that in the future mathematics will develop along lines essentially different from those in which it has developed since the second half of the nineteenth century. This will require a change in the philosophy of mathematics on which such development has been based. Therefore in the paper an alternative philosophy of mathematics is outlined.
@article{RIUMI_2010_1_3_2_a2,
     author = {Cellucci, Carlo},
     title = {Matematica e filosofia della matematica: presente e futuro},
     journal = {La Matematica nella societ\`a e nella cultura},
     pages = {201--234},
     publisher = {mathdoc},
     volume = {Ser. 1, 3},
     number = {2},
     year = {2010},
     zbl = {1213.00028},
     mrnumber = {2767069},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RIUMI_2010_1_3_2_a2/}
}
TY  - JOUR
AU  - Cellucci, Carlo
TI  - Matematica e filosofia della matematica: presente e futuro
JO  - La Matematica nella società e nella cultura
PY  - 2010
SP  - 201
EP  - 234
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RIUMI_2010_1_3_2_a2/
LA  - it
ID  - RIUMI_2010_1_3_2_a2
ER  - 
%0 Journal Article
%A Cellucci, Carlo
%T Matematica e filosofia della matematica: presente e futuro
%J La Matematica nella società e nella cultura
%D 2010
%P 201-234
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RIUMI_2010_1_3_2_a2/
%G it
%F RIUMI_2010_1_3_2_a2
Cellucci, Carlo. Matematica e filosofia della matematica: presente e futuro. La Matematica nella società e nella cultura, Série 1, Tome 3 (2010) no. 2, pp. 201-234. http://geodesic.mathdoc.fr/item/RIUMI_2010_1_3_2_a2/

Acerbi, F. (2000), Plato: Parmenides 149 a7-c3. A proof by complete induction?, Archive for History of Exact Sciences, vol. 55, pp. 57-76. | DOI | MR | Zbl

ASPRAY, W. e KITCHER, P. (a cura di) (1988), History and philosophy of modern mathematics, University of Minnesota Press, Minneapolis. | MR | Zbl

Bourbaki, N. (1962), L'architecture des mathématiques, in F. Le Lionnais (ed.), Les grands courants de la pensée mathématique, Blanchard, Paris, pp. 35-47. | MR

Bourbaki, N. (2006), Théorie des ensembles, Springer, Berlin. | MR

Bourbaki, N. (2007), Éléments d'histoire des mathématiques, Springer, Berlin. (Trad. it., Feltrinelli, Milano 1963).

Cartier, P. (1997), Vie et mort de Bourbaki. Notes sur l'histoire et la philosophie des mathématiques I, Institut des Hautes Etudes Scientifiques, Paris.

Cellucci, C. (1998), Le ragioni della logica, Laterza, Bari.

Cellucci, C. (2002), Filosofia e matematica, Laterza, Bari. | MR | Zbl

Cellucci, C. (2007), La filosofia della matematica del Novecento, Laterza, Bari. | MR | Zbl

Cellucci, C. (2008 a), Perché ancora la filosofia, Laterza, Bari.

Cellucci, C. (2008 b), Why proof? What is a proof?, in R. Lupacchini e G. Corsi (eds.), Deduction, computation, experiment. Exploring the effectiveness of proof, Springer, Berlin, pp. 1-27. | DOI | MR | Zbl

Cellucci, C. (2008 c), The nature of mathematical explanation, Studies in History and Philosophy of Science, vol.39, pp. 202-210.

Cellucci, C. (2009), Indiscrete variations on Gian-Carlo Rota's themes, in E. Damiani, O. D'Antona, V. Marra e F. Palombi (eds.), Combinatorics to philosophy. The legacy of G.C. Rota, Springer, NewYork 2009, pp. 211-228. Ristampato in M. Pitici (a cura di), The best writings on mathematics 2010, Princeton University Press, Princeton, di prossima pubblicazione. | MR

Cleary, J.J. (1995), Aristotle and mathematics: aporetic method in cosmology and metaphysics, Brill, Leiden. | DOI | MR

Corfield, D. (2003), Towards a philosophy of real mathematics, Cambridge University Press, Cambridge. | DOI | MR | Zbl

Curry, H. B. (1951), Outlines of a formalist philosophy of mathematics, North-Holland, Amsterdam. | MR | Zbl

Curry, H. B. (1977), Foundations of mathematical logic, Dover, New York. | MR | Zbl

Davis, P. J. e Hersh, R. (1980), The mathematical experience, Birkhäuser, Boston. (Trad. it., Edizioni di Comunità, Milano 1985). | MR

Dedekind, J. W. R. (1932), Was sind und was sollen die Zahlen?, in J. W. R. Dedekind, Gesammelte mathematische Werke, vol. III, Vieweg, Braunschweig, pp. 335-391. (Trad. it. in Dedekind 1982, pp. 79-128). | MR | Zbl

Dedekind, J. W. R. (1974), Lettera a Keferstein, 27 febbraio 1890, in M.-A. Sinaceur, L'infini et les nombres, Revue d'Histoire des Sciences, vol. 27 (1974), pp. 251-278. (Trad. it. in Dedekind 1982, pp. 154-156). | DOI | MR

Dedekind, J. W. R. (1982), Scritti sui fondamenti della matematica, a cura di F. Gana, Bibliopolis, Napoli.

De L'Hospital, G. (1716), Analyse des infiniment petits pour l'intelligence des lignes courbes, Montalant, Paris.

Devlin, K. (2008), What will count as mathematics in 2100?, in B. Gold e R. A. Simon (a cura di), Proof and other dilemmas. Mathematics and philosophy, The Mathematical Association of America, Washington, pp. 292-311. | MR

Dieudonné, J. (1964), Recent developments in mathematics, The American Mathematical Monthly, vol. 71, pp. 239-248. | DOI | MR

Dieudonné, J. (1988), Pour l'honneur de l'esprit humain. Les mathématiques aujourd'hui, Hachette, Paris. | MR

Dirac, P. (1958), The principles of quantum mechanics, Oxford University Press, Oxford. | MR | Zbl

Ferreiros, J. (1999), Labyrinth of thought, Birkhäuser, Boston. | DOI | MR | Zbl

FERREIROS, J. e GRAY, J. J. (a cura di) (2006), The architecture of modern mathematics. Essays in history and philosophy, Oxford University Press, Oxford. | MR | Zbl

GILLIES, D. (a cura di) (1992), Revolution in mathematics, Oxford University Press, Oxford. | MR | Zbl

Gödel, Kurt (1986-2002), Collected works, a cura di Solomon Feferman et al., Oxford University Press, Oxford. (Trad. it., Bollati Boringhieri, Torino 1999-2009). | MR

GÖWERS, T. (a cura di) (2008), The Princeton companion to mathematics, Princeton University Press, Princeton.

Griffiths, P. A. (2000), Mathematics at the turn of the millennium, The American Mathematical Monthly, vol. 107, No. 1, pp. 1-14. | DOI | MR | Zbl

Grosholz, E. (2007), Representation and productive ambiguity in mathematics and the sciences, Oxford University Press, Oxford. | MR | Zbl

GROSHOLZ, E. e BREGER, H. (a cura di) (2000), The growth of mathematical knowledge, Kluwer, Dordrecht. | DOI | MR | Zbl

Hadamard, J. (1954), The psychology of invention in the mathematical field, Dover, Mineola, NY. (Trad. it., Cortina, Milano 1993). | MR | Zbl

Hardy, G. H. (1929), Mathematical proof, Mind, vol. 38, pp. 1-25. | Zbl

Hardy, G. H. (1992), A mathematician's apology, Cambridge University Press, Cambridge. (Trad. it., Garzanti, Milano 1989). | DOI | MR | Zbl

Hersh, R. (1997), What is mathematics, really?, Oxford University Press, Oxford. (Trad. it., Baldini Castoldi Dalai, Milano 2001). | MR | Zbl

Hersh, R. (1998), Some proposals for reviving the philosophy of mathematics, in T. Tymoczko (ed.), New directions in the philosophy of mathematics, Princeton University Press, Princeton, pp. 9-28. | MR

HERSH, R. (a cura di) (2006), 18 unconventional essays on the nature of mathematics, Springer, New York. | DOI | MR | Zbl

Hilbert, D. (1926), Über das Unendliche, Mathematische Annalen, vol. 95, pp. 161-190. (Trad. it. in Hilbert 1985, pp. 233-266). | fulltext EuDML | DOI | MR

Hilbert, D. (1929), Probleme der Grundlegung der Mathematik, Mathematische Annalen, vol. 102, pp. 1-9. (Trad. it. in Hilbert 1985, pp. 291-300). | fulltext EuDML | DOI | MR | Zbl

Hilbert, D. (1931), Die Grundlegung der elementaren Zahlenlehre, Mathematische Annalen, vol. 104, pp. 485-494. (Trad. it. in Hilbert 1985, pp. 313-323). | fulltext EuDML | DOI | MR | Zbl

Hilbert, D. (1985), Ricerche sui fondamenti della matematica, a cura di V. M. Abrusci, Bibliopolis, Napoli. | MR

Huet, S. (1998), Bourbaki est mort, CQFD, Liberation, 28 aprile.

Kac, M., Rota, G.-C. e Schwartz, J. T. (1986), Discrete thoughts. Essays on mathematics, science, and philosophy, Birkhäuser, Boston. | DOI | MR | Zbl

Kitcher, P. (1983), The nature of mathematical knowledge, Oxford University Press, Oxford. | MR | Zbl

Kline, N. (1980), Mathematics, the loss of certainty, Oxford University Press, Oxford. (Trad. it., Mondadori, Milano 1985). | MR | Zbl

Kline, M. (1990), Mathematical thought from ancient to modern times, Oxford University Press, Oxford. (Trad. it., Einaudi, Torino 1999). | MR | Zbl

Lakatos, I. (1961), Essays in the logic of mathematical discovery, PhD thesis, Cambridge.

Lakatos, I. (1976), Proofs and refutations, a cura di J. Worrall e E. Zahar. Cambridge University Press, Cambridge. (Trad. it., Feltrinelli, Milano 1979). | MR

Leâvy-Leblond, J.-M. (1982), Physique et mathématiques, in Maurice Loi et al., Penser les mathématiques, Editions du Seuil, Paris, pp. 195-210. | MR

MANCOSU, P. (ed.) (2008), The philosophy of mathematical practice, Oxford University Press, Oxford. | DOI | MR | Zbl

Needham, T. (1997), Visual complex analysis, Oxford University Press, Oxford. | MR | Zbl

Newton, I. (1971), MS Add. 3698, f. 101, in I. B. Cohen, Introduction to Newton's "Principia", Cambridge University Press, Cambridge, pp. 292-294. | MR

Newton, I. (1981), The 1704 De Quadratura Curvarum: final text additions, in The mathematical papers, a cura di D. T. Whiteside, vol. VIII, Cambridge University Press, Cambridge, pp. 122-159.

Poincaré, H. (1908), Science et méthode, Flammarion, Paris. (Trad. it., Einaudi, Torino 1997).

Rota, G.-C. (1997), Indiscrete thoughts, Birkäuser, Boston. | DOI | MR

Russell, B. (1994), Mysticism and logic, Routledge, London. (Trad. it., Newton Compton, Roma 1970).

Senechal, M. (1998), The continuing silence of Bourbaki, The Mathematical Intelligencer, vol. 19, pp. 22-28. | Zbl

Shapiro, S. (1997), Philosophy of mathematics. Structure and ontology, Oxford University Press, Oxford. | MR | Zbl

Shapiro, S. (2000), Thinking about mathematics. The philosophy of mathematics, Oxford University Press, Oxford. | MR | Zbl

Shapiro, S. (2004), Foundations of mathematics: metaphysics, epistemology, structure, The Philosophical Quarterly, vol. 54, pp. 16-37. | DOI | MR

Starikova, I. (2010), Why do mathematicians need different ways of presenting mathematical objects? The case of Cayley graphs, Topoi, vol. 29, pp. 41-51. | DOI | MR | Zbl

Suppes, P. (2002), Representation and invariance of scientific structures, CSLI, Stanford. | MR | Zbl

Turing, A. M. (2001), Mathematical logic, a cura di R. O. Gandy e C. E. M. Yates, North-Holland, Amsterdam. | MR | Zbl

TYMOCZKO, T. (a cura di) (1985), New directions in the philosophy of mathematics, Birkhäuser, Boston. | DOI | MR | Zbl

VAN KERKHOVE, B. e VAN BENGEDEM, J. P. (a cura di) (2007), Perspectives on mathematical practices, Springer, Dordrecht.

Wang, H. (1996), A logical journey. From Gödel to philosophy, The MIT Press, Cambridge, Mass.. | MR

Weisberg, R. W. (2006), Creativity, Wiley, New York.

Welton, J., Monahan, A. J., Mellone, S. H. (1962), Intermediate logic, 4 ed. University Tutorial Press, London.

Zellini, P. (1985), La ribellione del numero, Adelphi, Milano.