Simmetrie e processi visivi
La Matematica nella società e nella cultura, Série 1, Tome 2 (2009) no. 1, pp. 1-30.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questo contributo sono introdotti concetti fondamentali di visione artificiale al fine di mettere in evidenza le connessioni che intercorrono fra talesettore della informatica applicata e quelli della matematica che sono utilizzati nellaprogettazione e l'implementazione degli algoritmi. Particolare rilevanza è data al concetto di simmetria spaziale e al suo ruolo nelle varie fasi che compongono i sistemidi visione artificiale. Sono inoltre brevemente elencate alcune applicazioni della visione artificiale in vari domini di interesse.
The paper intends to provide an overview of methods and algorithms that are exploited in designing and implementing artificial vision systems, and the existing connections of this applied topic with mathematics are underlined. Main emphasis is given to the concept of spatial symmetry and its role in different phases of an artificial visual system. Symmetry properties establish the invariance of a system to a given set of transformations. Physicists assign special meaning whenever symmetry is broken in nature; for example, groups of symmetry have been used to explain and predict the spatial organization of atoms in a crystal. Psychologists consider relevant the property of symmetry in the perception of visual signals. The paper will briefly describe different approaches, introduced in computer vision, to measure and detect symmetry. A review of some applications is also provided and regards the role of symmetry in attentive visual processing, the analysis of faces, the recognition of object, and the analysis of texture.
@article{RIUMI_2009_1_2_1_a0,
     author = {Di Ges\`u, Vito},
     title = {Simmetrie e processi visivi},
     journal = {La Matematica nella societ\`a e nella cultura},
     pages = {1--30},
     publisher = {mathdoc},
     volume = {Ser. 1, 2},
     number = {1},
     year = {2009},
     zbl = {1154.94303},
     mrnumber = {2537476},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RIUMI_2009_1_2_1_a0/}
}
TY  - JOUR
AU  - Di Gesù, Vito
TI  - Simmetrie e processi visivi
JO  - La Matematica nella società e nella cultura
PY  - 2009
SP  - 1
EP  - 30
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RIUMI_2009_1_2_1_a0/
LA  - it
ID  - RIUMI_2009_1_2_1_a0
ER  - 
%0 Journal Article
%A Di Gesù, Vito
%T Simmetrie e processi visivi
%J La Matematica nella società e nella cultura
%D 2009
%P 1-30
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RIUMI_2009_1_2_1_a0/
%G it
%F RIUMI_2009_1_2_1_a0
Di Gesù, Vito. Simmetrie e processi visivi. La Matematica nella società e nella cultura, Série 1, Tome 2 (2009) no. 1, pp. 1-30. http://geodesic.mathdoc.fr/item/RIUMI_2009_1_2_1_a0/

[1] N. Wiener, Cybernetics, or control and communication in the animal and the machine, Massachusetts Institute of Technology, Cambridge 1965. | MR

[2] C.E. Shannon, A mathematical theory of communication, Bell System Technical Journal, vol. 27, 1948. | DOI | MR | Zbl

[3] G. Kanizsa, Margini quasi percettivi in campi con stimolazione omogenea, Rivista di Psicologia, Vol.49, No.1 (1955), 7-30.

[4] M. Ferri, Visione delle macchine: una sfida anche per i matematici, Bollettino U.M.I., Matematica nella scienza e nella cultura, Vol. 8, 4-A (2001), 85-115. | fulltext bdim | fulltext EuDML | MR

[5] W. Khöler - H. Wallach, Figural after-effects: an investigation of visual processes, Proc. American Phil. Soc., Vol. 88 (1944), 269-357.

[6] H. Zabrodsky, Symmetry - a review, Technical Report 90-16, CS Dep. The Hebrew University of Jerusalem, 1990.

[7] N. Byers, E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws, Israel Mathematical Conference Proceedings Vol. 12, BarIlan University, Tel Aviv, Israel, December 2-3, 1996. | MR | Zbl

[8] A.M. WEINBERG, ed., The collected works of Eugene Paul Wigner, vol. 5, Springer-Verlag, New York (1992). | MR

[9] T.A. Smith, http://jan.ucc.nau.edu/~tas3/wtc/ii21s.pdf, 2005.

[10] S.H. Cullinane, http://finitegeometry.org/sc/16/puzzle/index.html.

[11] http://fotos.pere.net/escher/.

[12] V. Bruce, Recognizing faces, Lawrence Erlbaum Associates, 1988.

[13] J. Serra, Image analysis and mathematical morphology, Academic Press, New York, 1982. | MR | Zbl

[14] J. Canny, A computational approach to edge detection, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 8, N. 6 (1986), 679-698.

[15] V. Di Gesù - C. Valenti, Symmetry operators in computer vision Vistas in Astronomy, Elsevier Science, 1996.

[16] M. Bertero, Matematica ed immagini: alcuni esempi e applicazioni, Bollettino U.M.I., Matematica nella scienza e nella cultura, Vol. 80, 2-A (1999), 47-67. | fulltext bdim | fulltext EuDML

[17] D. Reisfeld - H. Wolfson - H. Yeshurun, Context free attentional operators: the generalized symmetry transform, Int. Journal of Computer Vision, Special Issue on Qualitative Vision, Vol. 14 (1995), 119-130.

[18] V. Di Gesù - C. Valenti - L. Strinati, Local operators to detect regions of interest, Pattern Recognition Letters, Vol. 18 (1997), 1077-1081.

[19] A. Chella - V. Di Gesù - I. Infantino - D. Intravaia - C. Valenti, Cooperating strategy for objects recognition, in Lecture Notes in Computer Science book Shape, contour and grouping in computer vision, Springer Verlag, Vol. 1681 (1999), 264-274.

[20] M. Minsky - S. Papert, Perceptrons, Cambridge, MA, MIT Press, 1969.

[21] H. Blum - R.N. Nagel, Shape description using weighted symmetric axis features, Journal of Pattern Recognition, Vol. 10 (1978), 167-180,. | Zbl

[22] A. Chianese - L.P. Cordella - M. De Santo - A. Marcelli - M. Vento, A structural method for handprinted character recognition, Recent Issues in Pattern Analysis and Recognition, 1998, 289-302.

[23] M. Brady - H. Asada, Smoothed local symmetries and their implementation, The International Journal of Robotics Research, Vol. 3, No. 3 (1984), 36-61.

[24] A. Rosenfeld, Picture Languages: Formal Models for Picture Recognition, Academic Press, New York, 1979. | MR | Zbl

[25] D.P. Mukherjee - A. Zisserman - M. Brady, Shape from symmetry: detecting and exploiting symmetry in affine images, Philosofical Transaction of Royal Society of London Academy, Vol. 351 (1995), 77-101. | Zbl

[26] T.J. Cham - R. Cipolla, Symmetry detection through local skewed symmetries, Image and Vision Computing, Vol. 13, No. 5 (1995), 439-455.

[27] J. Sato - R. Cipolla, Affine integral invariants for extracting symmetry axes, Image and Vision Computing, Vol. 15, No. 5 (1997), 627-635.

[28] A.M. Bruckstein - D. Shaked, Skew symmetry detection via invariant signatures, Pattern Recognition, Vol. 31, N. 2 (1998), 181-192.

[29] C.M. Bishop, Neural networks for pattern recognition, Oxford University Press, 1995. | MR | Zbl

[30] R.O. Duda - P.E. Hart - D.G. Stork, Pattern classification (2nd edition), Wiley, 2001. | MR

[31] V.N. Vapnik, The Nature of statistical learning theory, Springer, 1995. | DOI | MR | Zbl

[32] V. Di Gesù - B. Zavidovique, The S-Kernel: a measure of symmetry of objects, Pattern Recognition, Vol. 40, N. 3 (2006), 839-852. | Zbl

[33] V. Di Gesù - B. Zavidovique, Robust measures of symmetry, submitted to Image and Vision Computing, 2006.