Does Newton's method for set-valued maps converges uniformly in mild differentiability context?
Revista colombiana de matematicas, Tome 34 (2000) no. 2, pp. 49-56.

Voir la notice de l'article provenant de la source Sociedad Colombiana de Matemáticas

@article{RCM_2000_34_2_a3,
     author = {PIETRUS and ALAIN},
     title = {Does {Newton's} method for set-valued maps converges uniformly in mild differentiability context?},
     journal = {Revista colombiana de matematicas},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2000},
     url = {http://geodesic.mathdoc.fr/item/RCM_2000_34_2_a3/}
}
TY  - JOUR
AU  - PIETRUS
AU  - ALAIN
TI  - Does Newton's method for set-valued maps converges uniformly in mild differentiability context?
JO  - Revista colombiana de matematicas
PY  - 2000
SP  - 49
EP  - 56
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RCM_2000_34_2_a3/
ID  - RCM_2000_34_2_a3
ER  - 
%0 Journal Article
%A PIETRUS
%A ALAIN
%T Does Newton's method for set-valued maps converges uniformly in mild differentiability context?
%J Revista colombiana de matematicas
%D 2000
%P 49-56
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RCM_2000_34_2_a3/
%F RCM_2000_34_2_a3
PIETRUS; ALAIN. Does Newton's method for set-valued maps converges uniformly in mild differentiability context?. Revista colombiana de matematicas, Tome 34 (2000) no. 2, pp. 49-56. http://geodesic.mathdoc.fr/item/RCM_2000_34_2_a3/