Free boundary minimal surfaces: a survey of recent results
Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 86 (2019) no. 1, pp. 103-121.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present a wide-spectrum overview of some recent developments in the theory of free boundary minimal surfaces, with special emphasis on the problem of compactness under mild curvature conditions on the ambient manifold.
Presentiamo un ampio resoconto di alcuni sviluppi recenti nella teoria delle superfici minime a frontiera libera, con particolare riferimento al problema della compattezza sotto deboli ipotesi sulla curvatura sulla varietà ambiente.
@article{RASFM_2019_4_86_1_a1,
     author = {Carlotto, Alessandro},
     title = {Free boundary minimal surfaces: a survey of recent results},
     journal = {Rendiconto della Accademia delle scienze fisiche e matematiche},
     pages = {103--121},
     publisher = {mathdoc},
     volume = {Ser. 4, 86},
     number = {1},
     year = {2019},
     zbl = {07294622},
     mrnumber = {4176856},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a1/}
}
TY  - JOUR
AU  - Carlotto, Alessandro
TI  - Free boundary minimal surfaces: a survey of recent results
JO  - Rendiconto della Accademia delle scienze fisiche e matematiche
PY  - 2019
SP  - 103
EP  - 121
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a1/
LA  - en
ID  - RASFM_2019_4_86_1_a1
ER  - 
%0 Journal Article
%A Carlotto, Alessandro
%T Free boundary minimal surfaces: a survey of recent results
%J Rendiconto della Accademia delle scienze fisiche e matematiche
%D 2019
%P 103-121
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a1/
%G en
%F RASFM_2019_4_86_1_a1
Carlotto, Alessandro. Free boundary minimal surfaces: a survey of recent results. Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 86 (2019) no. 1, pp. 103-121. http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a1/

[1] N. Aiex, H. Hong, Index estimates for surfaces with constant mean curvature in 3-dimensional manifolds, preprint (arXiv: 1901.00944). | DOI | MR | Zbl

[2] A. Aché, D. Maximo, H. Wu, Metrics with nonnegative Ricci curvature on convex three-manifolds, Geom. Topol. 20 (2016), no. 5, 2905-2922. | DOI | MR | Zbl

[3] F. Almgren, Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277-292. | DOI | MR | Zbl

[4] L. Ambrozio, R. Buzano, A. Carlotto, B. Sharp, Geometric convergence results for closed minimal surfaces via bubbling analysis, preprint (arXiv: 1803.04956). | Zbl

[5] L. Ambrozio, R. Buzano, A. Carlotto, B. Sharp, Bubbling analysis and geometric convergence results for free boundary minimal surfaces, J. Éc. polytech. Math. 6 (2019), 621-664. | DOI | MR | Zbl

[6] L. Ambrozio, A. Carlotto, B. Sharp, Compactness of the space of minimal hypersurfaces with bounded volume and p-th Jacobi eigenvalue, J. Geom. Anal. 26 (2016), no. 4, 2591-2601. | DOI | MR | Zbl

[7] L. Ambrozio, A. Carlotto, B. Sharp, Compactness analysis for free boundary minimal hypersurfaces, Calc. Var. PDE 57 (2018), no. 1, 1-39. | DOI | MR | Zbl

[8] L. Ambrozio, A. Carlotto, B. Sharp, Comparing the Morse index and the first Betti number of minimal hypersurfaces, J. Differential Geom., 108 (2018), no. 3, 379-410. | DOI | MR | Zbl

[9] L. Ambrozio, A. Carlotto, B. Sharp, Index estimates for free boundary minimal hypersurfaces, Math. Ann., 370 (2018), no. 3-4, pages 1063-1078. | DOI | MR | Zbl

[10] S. Brendle, Embedded minimal tori in S3 and the Lawson conjecture, Acta Math. 211 (2013), no. 2, 177-190. | DOI | MR | Zbl

[11] R. Buzano, B. Sharp, Qualitative and quantitative estimates for minimal hypersurfaces with bounded index and area, Trans. Amer. Math. Soc., 370 (2018), 4373-4399. | DOI | MR | Zbl

[12] L. Caffarelli, D. Jerison, C. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimensions. Noncompact problems at the intersection of geometry, analysis, and topology, 83-97, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004. | DOI | MR | Zbl

[13] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry 1 (1967), 111-125. | MR | Zbl

[14] M. Cavalcante, D. De Oliveira, Index estimates for free boundary constant mean curvature surfaces, preprint (arXiv: 1803.05995). | DOI | MR

[15] S. Y. Cheng and J. Tysk, Schrödinger operators and index bounds for minimal submanifolds, Rocky Mountain J. Math. 24 (1994), no. 3, 977-996. | DOI | MR | Zbl

[16] J. Chen, A. Fraser, C. Pang, Minimal immersions of compact bordered Riemann surfaces with free boundary, Trans. Amer. Math. Soc., 367 (2014), no. 4, 2487-2507. | DOI | MR | Zbl

[17] O. Chodosh, D. Ketover, D. Maximo, Minimal surfaces with bounded index, Invent. Math. 209 (2017), no. 3, 617-664. | DOI | MR | Zbl

[18] O. Chodosh, D. Maximo, On the topology and index of minimal surfaces, J. Differential Geom. 104 (2016), no. 3, 399-418. | MR | Zbl

[19] H. Choi, R. Schoen, The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Invent. Math. 81 (1985), no. 3, 387-394. | fulltext EuDML | DOI | MR | Zbl

[20] H. Choi, A. Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Differential Geom. 18 (1983), no. 3, 559-562. | MR | Zbl

[21] T. Colding, C. De Lellis, Singular limit laminations, Morse index, and positive scalar curvature, Topology 44 (2005), no. 1, 25-45. | DOI | MR | Zbl

[22] T. Colding, W. Minicozzi, A course in minimal surfaces, Graduate Studies in Mathematics, 121. American Mathematical Society, Providence, RI, 2011. xii+313 pp. | DOI | MR | Zbl

[23] R. Courant, The existence of minimal surfaces of given topological structure under prescribed boundary conditions, Acta Math. 72 (1940), 51-98. | DOI | MR | Zbl

[24] R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. Appendix by M. Schiffer, Interscience Publishers, Inc., New York, N.Y., 1950. xiii+330 pp. | MR

[25] C. De Lellis, J. Ramic, Min-max theory for minimal hypersurfaces with boundary, preprint (arXiv:1611.00926). | MR | Zbl

[26] B. Devyver, Index of the critical catenoid, preprint (arXiv: 1609.02315). | DOI | MR | Zbl

[27] M. do Carmo, C. K. Peng, Stable complete minimal surfaces in $\mathbb{R}^3$ are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 903-906. | DOI | MR | Zbl

[28] N. Ejiri and M. Micallef, Comparison between second variation of area and second variation of energy of a minimal surface, Adv. Calc. Var. 1 (2008), no. 3, 223-239. | DOI | MR | Zbl

[29] A. Folha, F. Pacard, T. Zolotareva, Free boundary minimal surfaces in the unit 3-ball, Manuscripta Math. 154 (2017), no. 3-4, 359-409. | DOI | MR | Zbl

[30] A. Fraser, On the free boundary variational problem for minimal disks, Comm. Pure Appl. Math. 53 (2000), no. 8, 931-971. | DOI | MR | Zbl

[31] A. Fraser, Index estimates for minimal surfaces and k-convexity, Proc. Amer. Math. Soc. 135 (2007), no. 11, 3733-3744. | DOI | MR | Zbl

[32] A. Fraser, M. Li, Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary, J. Differential Geom. 96 (2014), no. 2 , 183-200. | MR | Zbl

[33] A. Fraser, R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 (2011), no. 5, 4011-4030. | DOI | MR | Zbl

[34] A. Fraser, R. Schoen, Minimal surfaces and eigenvalue problems. Geometric analysis, mathematical relativity, and nonlinear partial differential equations, 105-121, Contemp. Math. 599, Amer. Math. Soc., Providence, RI, 2013. | DOI | MR | Zbl

[35] A. Fraser, R. Schoen, Uniqueness theorems for free boundary minimal disks in space forms, Int. Math. Res. Not. IMRN 2015, no. 17, 8268-8274. | DOI | MR | Zbl

[36] A. Fraser, R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, Invent. Math. 203 (2016), no. 3, 823-890. | DOI | MR | Zbl

[37] B. Freidin, M. Gulian, P. Mcgrath, Free boundary minimal surfaces in the unit ball with low cohomgeneity, Proc. Amer. Math. Soc. 145 (2017), no. 4, 1671-1683. | DOI | MR | Zbl

[38] M. Grüter, J. Jost, On embedded minimal disks in convex bodies, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 5, 345-390. | fulltext EuDML | MR | Zbl

[39] Q. Guang, X. Zhou, Compactness and generic finiteness for free boundary minimal hypersurfaces, preprint (arXiv:1803.01509). | DOI | MR | Zbl

[40] D. Hoffman, W. H. Meeks Iii, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), no. 2, 373-377. | fulltext EuDML | DOI | MR | Zbl

[41] W.-Y. Hsiang, Minimal cones and the spherical Bernstein problem. I, Ann. of Math. (2) 118 (1983), no. 1, 61-73. | fulltext EuDML | DOI | MR | Zbl

[42] W.-Y. Hsiang, Minimal cones and the spherical Bernstein problem. II, Invent. Math. 74 (1983), no. 3, 351-369. | fulltext EuDML | DOI | MR | Zbl

[43] N. Kapouleas, M. Li Free boundary minimal surfaces in the unit three-ball via desingularization of the critical catenoid and equatorial disk, preprint (arXiv: 1709.08556).

[44] N. Kapouleas, D. Wygul, Free-boundary minimal surfaces with connected boundary in the 3-ball by tripling the equatorial disc, preprint (arXiv: 1711.00818).

[45] K. Irie, F. C. Marques, A. Neves, Density of minimal hypersurfaces for generic metrics, Ann. Math. 187 (2018), no. 3, 963-972. | DOI | MR | Zbl

[46] L. Jorge, W. H. Meeks Iii, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), no. 2, 203-221. | DOI | MR | Zbl

[47] J. Jost, Existence results for embedded minimal surfaces of controlled topological type. I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 1, 15-50. | fulltext EuDML | MR | Zbl

[48] J. Jost, Existence results for embedded minimal surfaces of controlled topological type. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 3, 401-426. | fulltext EuDML | MR | Zbl

[49] J. Jost, Existence results for embedded minimal surfaces of controlled topological type. III, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 1, 165-167. | fulltext EuDML | MR | Zbl

[50] D. Ketover, Free boundary minimal surfaces of unbounded genus, preprint (arXiv:1612.08691). | Zbl

[51] M. Li, A general existence theorem for embedded minimal surfaces with free boundary, Comm. Pure Appl. Math. 68 (2015), no. 2, 286-331. | DOI | MR | Zbl

[52] M. Li, X. Zhou, Min-max theory for free boundary minimal hypersurfaces I - regularity theory, preprint (arXiv:1611.02612).

[53] V. Lima, Bounds for the Morse index of free boundary minimal surfaces, preprint (arXiv: 1710.10971).

[54] Y. Liokumovich, F. C. Marques, A. Neves, Weyl law for the volume spectrum, Ann. Math. 187 (2018), no. 3, 933-962. | DOI | MR | Zbl

[55] F. Marques, Minimal surfaces - variational theory and applications, Proceedings of the International Congress of Mathematicians, Seoul 2014. | MR | Zbl

[56] F. Marques, A. Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math. 209 (2017), no. 2, 577-616. | DOI | MR | Zbl

[57] F. Marques, A. Neves, Min-max theory and the Willmore conjecture, Ann. of Math. (2) 179 (2014), no. 2, 683-782. | DOI | MR | Zbl

[58] F. Marques, A. Neves, Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math. 4 (2016), no. 4, 463-511. | DOI | MR | Zbl

[59] F. Marques, A. Neves, Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J. 161 (2012), no. 14, 2725-2752. | DOI | MR | Zbl

[60] F. C. Marques, A. Neves, A. Song, Equidistribution of minimal hypersurfaces for generic metrics, preprint (arXiv: 1712.06238). | DOI | MR | Zbl

[61] D. Máximo, I. Nunes, G. Smith, Free boundary minimal annuli in convex three-manifolds, J. Differential Geom. 106 (2017), no. 1, 139-186. | MR | Zbl

[62] P. Mcgrath, A characterization of the critical catenoid, preprint (arXiv:1603.04114v2). | DOI | MR | Zbl

[63] N. Nadirashvili, A. Penskoi, Free boundary minimal surfaces and overdetermined boundary value problems, preprint (arXiv: 1812.08943). | DOI | MR | Zbl

[64] J. Nitsche, Stationary partitioning of convex bodies, Arch. Rational Mech. Anal. 89 (1985), no. 1, 1-19. | DOI | MR | Zbl

[65] R. Osserman, On complete minimal surfaces, Arch. Rational Mech. Anal. 13 (1963), 392-404. | DOI | MR | Zbl

[66] R. Osserman, Global properties of minimal surfaces in $E^3$ and $E^n$, Ann. of Math. (2) 80 (1964), 340-364. | DOI | MR | Zbl

[67] J. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo. Mathematical Notes 27 (1981). | MR | Zbl

[68] A. Ros, One-sided complete stable minimal surfaces, J. Differential Geom. 74 (2006), no. 1, 69-92. | MR | Zbl

[69] A. Ros, Stability of minimal and constant mean curvature surfaces with free boundary, Mat. Contemp. 35 (2008), 221-240. | MR | Zbl

[70] A. Ros, R. Souam, On stability of capillary surfaces in a ball, Pacific J. Math. 178 (1997), no. 2, 345-361. | DOI | MR | Zbl

[71] A. Ros, E. Vergasta, Stability for hypersurfaces of constant mean curvature with free boundary, Geom. Dedicata 56 (1995), no. 1, 19-33. | DOI | MR | Zbl

[72] A. Savo, Index bounds for minimal hypersurfaces of the sphere, Indiana Univ. Math. J. 59 (2010), no. 3, 823-837. | DOI | MR | Zbl

[73] R. Schoen, L. Simon, Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math. 34 (1981), no. 6, 741-797. | DOI | MR | Zbl

[74] B. Sharp, Compactness of minimal hypersurfaces with bounded index, J. Differential Geom. 106 (2017), no. 2, 317-339. | DOI | MR | Zbl

[75] G. Smith, D. Zhou, The Morse index of the critical catenoid, preprint (arXiv:1609.01485). | DOI | MR | Zbl

[76] M. Struwe, On a free boundary problem for minimal surfaces, Invent. Math. 75 (1984), no. 3, 547-560. | fulltext EuDML | DOI | MR | Zbl

[77] J. Tysk, Finiteness of index and total scalar curvature for minimal hypersurfaces, Proc. Amer. Math. Soc. 105 (1989), no. 2, 428-435. | DOI | MR | Zbl

[78] G. Wang, Birkhoff minimax principle for minimal surfaces with a free boundary, Math. Ann. 314 (1999), no. 1, 89-107. | DOI | MR | Zbl

[79] B. White, Which ambient spaces admit isoperimetric inequalities for submanifolds?, J. Diff. Geom. 83 (2009), no. 1 213-228. | MR | Zbl