A Note on Lax Projective Embeddings of Grassmann Spaces
Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 85 (2018) no. 1, pp. 5-7

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In the paper (Ferrara Dentice et al., 2004) a complete exposition of the state of the art for lax embeddings of polar spaces of finite rank $\ge 3$ is presented. As a consequence, we have that if a Grassmann space $G$ of dimension 3 and index 1 has a lax embedding in a projective space over a skew–field $K$, then $G$ is the Klein quadric defined over a subfield of $K$. In this paper, I examine Grassmann spaces of arbitrary dimension $d \ge 3$ and index $h \ge 1$ having a lax embedding in a projective space.
@article{RASFM_2018_4_85_1_a0,
     author = {Ferrara Dentice, Eva},
     title = {A {Note} on {Lax} {Projective} {Embeddings} of {Grassmann} {Spaces}},
     journal = {Rendiconto della Accademia delle scienze fisiche e matematiche},
     pages = {5--7},
     publisher = {mathdoc},
     volume = {Ser. 4, 85},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a0/}
}
TY  - JOUR
AU  - Ferrara Dentice, Eva
TI  - A Note on Lax Projective Embeddings of Grassmann Spaces
JO  - Rendiconto della Accademia delle scienze fisiche e matematiche
PY  - 2018
SP  - 5
EP  - 7
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a0/
LA  - en
ID  - RASFM_2018_4_85_1_a0
ER  - 
%0 Journal Article
%A Ferrara Dentice, Eva
%T A Note on Lax Projective Embeddings of Grassmann Spaces
%J Rendiconto della Accademia delle scienze fisiche e matematiche
%D 2018
%P 5-7
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a0/
%G en
%F RASFM_2018_4_85_1_a0
Ferrara Dentice, Eva. A Note on Lax Projective Embeddings of Grassmann Spaces. Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 85 (2018) no. 1, pp. 5-7. http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a0/