A Note on Lax Projective Embeddings of Grassmann Spaces
Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 85 (2018) no. 1, pp. 5-7
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In the paper (Ferrara Dentice et al., 2004) a complete exposition of the state of the art for lax embeddings of polar spaces of finite rank $\ge 3$ is presented. As a consequence, we have that if a Grassmann space $G$ of dimension 3 and index 1 has a lax embedding in a projective space over a skew–field $K$, then $G$ is the Klein quadric defined over a subfield of $K$. In this paper, I examine Grassmann spaces of arbitrary dimension $d \ge 3$ and index $h \ge 1$ having a lax embedding in a projective space.
@article{RASFM_2018_4_85_1_a0,
author = {Ferrara Dentice, Eva},
title = {A {Note} on {Lax} {Projective} {Embeddings} of {Grassmann} {Spaces}},
journal = {Rendiconto della Accademia delle scienze fisiche e matematiche},
pages = {5--7},
year = {2018},
volume = {Ser. 4, 85},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a0/}
}
TY - JOUR AU - Ferrara Dentice, Eva TI - A Note on Lax Projective Embeddings of Grassmann Spaces JO - Rendiconto della Accademia delle scienze fisiche e matematiche PY - 2018 SP - 5 EP - 7 VL - 85 IS - 1 UR - http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a0/ LA - en ID - RASFM_2018_4_85_1_a0 ER -
Ferrara Dentice, Eva. A Note on Lax Projective Embeddings of Grassmann Spaces. Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 85 (2018) no. 1, pp. 5-7. http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a0/