Voir la notice de l'article provenant de la source Numdam
In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized criterion akin to the Mallows’ . We state non asymptotic risk bounds for our estimator in some -norm and we show that it is adaptive in the minimax sense over a large class of Besov balls of the form with .
Keywords: nonparametric regression, least-squares estimator, adaptive estimation, autoregression, mixing processes
@article{PS_2001__5__33_0, author = {Baraud, Yannick and Comte, F. and Viennet, G.}, title = {Model selection for (auto-)regression with dependent data}, journal = {ESAIM: Probability and Statistics}, pages = {33--49}, publisher = {EDP-Sciences}, volume = {5}, year = {2001}, mrnumber = {1845321}, zbl = {0990.62035}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PS_2001__5__33_0/} }
TY - JOUR AU - Baraud, Yannick AU - Comte, F. AU - Viennet, G. TI - Model selection for (auto-)regression with dependent data JO - ESAIM: Probability and Statistics PY - 2001 SP - 33 EP - 49 VL - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/PS_2001__5__33_0/ LA - en ID - PS_2001__5__33_0 ER -
Baraud, Yannick; Comte, F.; Viennet, G. Model selection for (auto-)regression with dependent data. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 33-49. http://geodesic.mathdoc.fr/item/PS_2001__5__33_0/