Voir la notice de l'article provenant de la source Numdam
In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized criterion akin to the Mallows’ . We state non asymptotic risk bounds for our estimator in some -norm and we show that it is adaptive in the minimax sense over a large class of Besov balls of the form with .
@article{PS_2001__5__33_0, author = {Baraud, Yannick and Comte, F. and Viennet, G.}, title = {Model selection for (auto-)regression with dependent data}, journal = {ESAIM: Probability and Statistics}, pages = {33--49}, publisher = {EDP-Sciences}, volume = {5}, year = {2001}, mrnumber = {1845321}, zbl = {0990.62035}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PS_2001__5__33_0/} }
TY - JOUR AU - Baraud, Yannick AU - Comte, F. AU - Viennet, G. TI - Model selection for (auto-)regression with dependent data JO - ESAIM: Probability and Statistics PY - 2001 SP - 33 EP - 49 VL - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/PS_2001__5__33_0/ LA - en ID - PS_2001__5__33_0 ER -
Baraud, Yannick; Comte, F.; Viennet, G. Model selection for (auto-)regression with dependent data. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 33-49. http://geodesic.mathdoc.fr/item/PS_2001__5__33_0/
[1] Information theory and an extension of the maximum likelihood principle, in Proc. 2nd International Symposium on Information Theory, edited by P.N. Petrov and F. Csaki. Akademia Kiado, Budapest (1973) 267-281. | Zbl | MR
,[2] A new look at the statistical model identification. IEEE Trans. Automat. Control 19 (1984) 716-723. | Zbl | MR
,[3] Geometric and subgeometric rates for markovian processes in the neighbourhood of linearity. C. R. Acad. Sci. Paris 326 (1998) 371-376. | Zbl | MR
,[4] Model selection for regression on a fixed design. Probab. Theory Related Fields 117 (2000) 467-493. | Zbl | MR
,[5] Model selection for regression on a random design, Preprint 01-10. DMA, École Normale Supérieure (2001). | MR | mathdoc-id
,[6] Adaptive estimation in autoregression or -mixing regression via model selection. Ann. Statist. (to appear). | Zbl | MR
, and ,[7] Risks bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. | Zbl | MR
, and ,[8] An adaptive compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. | Zbl | MR
and ,[9] How many bins must be put in a regular histogram. Working paper (2001).
and ,[10] Wavelet and fast wavelet transform on an interval. Appl. Comput. Harmon. Anal. 1 (1993) 54-81. | Zbl | MR
, and ,[11] Ten lectures on wavelets. SIAM: Philadelphia (1992). | Zbl | MR
,[12] Constructive Approximation. Springer-Verlag (1993). | Zbl | MR
and ,[13] Minimax estimation via wavelet shrinkage. Ann. Statist. 26 (1998) 879-921. | Zbl | MR
and ,[14] Mixing properties and examples. Springer-Verlag (1994). | Zbl | MR
,[15] Random Iterative Models. Springer, Berlin, New-York (1997). | Zbl | MR
,[16] On nonparametric estimation in nonlinear AR(1)-models. Statist. Probab. Lett. 44 (1999) 29-45. | Zbl | MR
,[17] On the spectrum of stationary Gaussian sequences satisfying the strong mixing condition I: Necessary conditions. Theory Probab. Appl. 10 (1965) 85-106. | Zbl | MR
,[18] On optimal rates of convergence for nonparametric regression with random design, Working Paper. Stuttgart University (1997).
,[19] On the strong mixing conditions for stationary Gaussian sequences. Theory Probab. Appl. 5 (1960) 204-207. | Zbl
and ,[20] Asymptotic optimality for , cross-validation and generalized cross-validation: Discrete index set. Ann. Statist. 15 (1987) 958-975. | Zbl | MR
,[21] Constructive Approximation, Advanced Problems. Springer, Berlin (1996). | Zbl | MR
, and ,[22] Some comments on . Technometrics 15 (1973) 661-675. | Zbl
,[23] Quelques inégalités sur les martingales d'après Dubins et Freedman, Séminaire de Probabilités de l'Université de Strasbourg. Vols. 68/69 (1969) 162-169. | Zbl | mathdoc-id
,[24] Minimum complexity regression estimation with weakly dependent observations. IEEE Trans. Inform. Theory 42 (1996) 2133-2145. | Zbl | MR
and ,[25] Memory-universal prediction of stationary random processes. IEEE Trans. Inform. Theory 44 (1998) 117-133. | Zbl | MR
and ,[26] Regression-type inference in nonparametric autoregression. Ann. Statist. 26 (1998) 1570-1613. | Zbl | MR
and ,[27] A family of asymptotically optimal methods for choosing the order of a projective regression estimate. Theory Probab. Appl. 37 (1992) 471-481. | Zbl | MR
and ,[28] Selection of the order of an autoregressive model by Akaike's information criterion. Biometrika 63 (1976) 117-126. | Zbl
,[29] An optimal selection of regression variables. Biometrika 68 (1981) 45-54. | Zbl | MR
,[30] Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes. Ann. Statist. 23 (1995) 1779-1801. | Zbl | MR
,[31] Some limit theorems for random functions. I. Theory Probab. Appl. 4 (1959) 179-197. | Zbl | MR
and ,