Voir la notice de l'article provenant de la source Numdam
The subject of this paper is to estimate adaptively the common probability density of independent, identically distributed random variables. The estimation is done at a fixed point , over the density functions that belong to the Sobolev class . We consider the adaptive problem setup, where the regularity parameter is unknown and varies in a given set . A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.
@article{PS_2001__5__1_0, author = {Butucea, Cristina}, title = {Exact adaptive pointwise estimation on {Sobolev} classes of densities}, journal = {ESAIM: Probability and Statistics}, pages = {1--31}, publisher = {EDP-Sciences}, volume = {5}, year = {2001}, mrnumber = {1845320}, zbl = {0990.62032}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PS_2001__5__1_0/} }
Butucea, Cristina. Exact adaptive pointwise estimation on Sobolev classes of densities. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 1-31. http://geodesic.mathdoc.fr/item/PS_2001__5__1_0/
[1] Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1995) 301-413. | Zbl | MR
, and ,[2] Integral representations of functions and imbedding theorems. J. Wiley, New York (1978).
, and ,[3] From model selection to adaptive estimation, Festschrift fur Lucien Le Cam. Springer (1997) 55-87. | Zbl | MR
and ,[4] A constrained risk inequality with application to nonparametric functional estimation. Ann. Statist. 24 (1996) 2524-2535. | Zbl | MR
and ,[5] The adaptive rates of convergence in a problem of pointwise density estimation. Statist. Probab. Lett. 47 (2000) 85-90. | Zbl | MR
,[6] Numerical results concerning a sharp adaptive density estimator. Comput. Statist. 1 (2001). | Zbl | MR
,[7] A universally acceptable smoothing factor for kernel density estimates. Ann. Statist. 24 (1996) 2499-2512. | Zbl | MR
and ,[8] Wavelet shrinkage: Asymptopia? J. R. Stat. Soc. Ser. B Stat. Methodol. 57 (1995) 301-369. | Zbl | MR
, , and ,[9] Density estimation by wavelet thresholding. Ann. Statist. 24 (1996) 508-539. | Zbl | MR
, , and ,[10] Renormalization exponents and optimal pointwise rates of convergence. Ann. Statist. 20 (1992) 944-970. | Zbl | MR
and ,[11] Nonparametric estimation of a density with unknown smoothness. Theory Probab. Appl. 30 (1985) 557-568. | Zbl
,[12] An adaptive algorithm of nonparametric filtering. Automat. Remote Control 11 (1984) 1434-1440. | Zbl
and ,[13] On spatially adaptive estimation of nonparametric regression. Math. Methods Statist. 6 (1997) 135-170. | Zbl | MR
and ,[14] Adaptive asymptotically minimax estimates of smooth signals. Problems Inform. Transmission 23 (1987) 57-67. | Zbl | MR
,[15] Quasilinear estimates for signals in . Problems Inform. Transmission 26 (1990) 15-20. | Zbl | MR
,[16] Nonparametric estimation of smooth probability densities in . Problems Inform. Transmission 28 (1992) 44-54. | Zbl | MR
,[17] Adaptive spline estimates in a nonparametric regression model. Theory Probab. Appl. 37 (1992) 521-529. | Zbl | MR
and ,[18] Statistical estimation: Asymptotic theory. Springer-Verlag, New York (1981). | Zbl | MR
and ,[19] Wavelet estimators: Adapting to unknown smoothness. Math. Methods Statist. 6 (1997) 1-25. | Zbl | MR
,[20] Density estimation by kernel and wavelet method, optimality in Besov space. Statist. Probab. Lett. 18 (1993) 327-336. | Zbl | MR
and ,[21] adaptive density estimation. Bernoulli 2 (1996) 229-247. | Zbl | MR
, and ,[22] Sharp adaptive estimation of linear functionals, Prépublication 540. LPMA Paris 6 (1999). | Zbl
and ,[23] On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 (1990) 454-466. | Zbl | MR
,[24] Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimates. Theory Probab. Appl. 36 (1991) 682-697. | Zbl | MR
,[25] On problems of adaptive estimation in white Gaussian noise. Advances in Soviet Math. Amer. Math. Soc. 12 (1992b) 87-106. | Zbl | MR
,[26] Adaptive minimax estimation of infinitely differentiable functions. Math. Methods Statist. 7 (1998) 123-156. | Zbl | MR
and ,[27] Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 (1997) 929-947. | Zbl | MR
, and ,[28] Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 (1997) 2512-2546. | Zbl | MR
and ,[29] Convergence of Stochastic Processes. Springer-Verlag, New York (1984). | Zbl | MR
,[30] Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes. Ann. Statist. 26 (1998) 2420-2469. | Zbl | MR
,[31] A maximal inequality for empirical processes, Technical Report TW 9505. University of Leiden, Leiden (1995).
,