Strong approximation for set-indexed partial sum processes via KMT constructions III
ESAIM: Probability and Statistics, Tome 1 (1997), pp. 319-338.

Voir la notice de l'article provenant de la source Numdam

@article{PS_1997__1__319_0,
     author = {Emmanuel, Rio},
     title = {Strong approximation for set-indexed partial sum processes via {KMT} constructions {III}},
     journal = {ESAIM: Probability and Statistics},
     pages = {319--338},
     publisher = {EDP-Sciences},
     volume = {1},
     year = {1997},
     mrnumber = {1475865},
     zbl = {0930.60016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PS_1997__1__319_0/}
}
TY  - JOUR
AU  - Emmanuel, Rio
TI  - Strong approximation for set-indexed partial sum processes via KMT constructions III
JO  - ESAIM: Probability and Statistics
PY  - 1997
SP  - 319
EP  - 338
VL  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/PS_1997__1__319_0/
LA  - en
ID  - PS_1997__1__319_0
ER  - 
%0 Journal Article
%A Emmanuel, Rio
%T Strong approximation for set-indexed partial sum processes via KMT constructions III
%J ESAIM: Probability and Statistics
%D 1997
%P 319-338
%V 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/PS_1997__1__319_0/
%G en
%F PS_1997__1__319_0
Emmanuel, Rio. Strong approximation for set-indexed partial sum processes via KMT constructions III. ESAIM: Probability and Statistics, Tome 1 (1997), pp. 319-338. http://geodesic.mathdoc.fr/item/PS_1997__1__319_0/

Assouad, P., ( 1983), Densité et dimension. Ann. Inst. Fourier 33 233-282. | Zbl | MR | mathdoc-id

Bass, R. F., ( 1985), Law of the iterated logarithm for partial-sum processes with finite variance. Z. Wahrsch. verw. Gebiete 70 591-608. | Zbl | MR

Beck, J., ( 1985), Lower bounds on the approximation of the multivariate empirical process. Z. Wahrsch. verw. Gehiete 70 289-306. | Zbl | MR

Breiman, L., ( 1967), On the tail behavior of sums of independent random variables. Z. Wahrsch. verw. Gebiete 9 20-25. | Zbl | MR

Bretagnolle, J. and Massart, P., ( 1989), Hungarian constructions from the non-asymptotic viewpoint. Ann. Probab. 17 239-256. | Zbl | MR

Dudley, R. M., 1973, Sample functions of the Gaussian process. Ann. Probab. 1 66-103. | Zbl | MR

Einmahl, U., ( 1987), Strong invariance principle for partial sums of independent random vectors. Ann. Probab. 15 1419-1440. | Zbl | MR

Komlós, J., Major, P. and Tusnády, G., ( 1975), An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrsch, verw, Gebiete 32 111-131. | Zbl | MR

Komlós, J., Major, P. and Tusnády, G., ( 1976), An approximation of partial sums of independent rv's and the sample df. II. Z. Wahrsch. verw. Gebiete 34 35-58. | Zbl | MR

Laurent-Bonvalot, F., ( 1991) Approximation forte de processus empiriques et applications. Thèse de doctorat, chapitre 2. Université Paris Sud.

Petrov, V. V., ( 1995), Limit theorems of probability theory: sequences of independent random variables. Oxford university press. Oxford. | Zbl | MR

Pollard, D. ( 1984), Convergence of stochastic processes. Springer Series in Statistics. Springer, Berlin. | Zbl | MR

Rio, E., ( 1990), Approximation forte pour des processus de sommes partielles indexés par les quadrants. Thèse de doctorat, chapitre 3. Université Paris Sud.

Rio, E., ( 1993a), Strong approximation for set-indexed partial sum Processes, via KMT constructions I. Ann. Probab. 21 759-790. | Zbl | MR

Rio, E., ( 1993b), Strong approximation for set-indexed partial sum Processes, via KMT constructions II. Ann. Probab. 21 1706-1727. | Zbl | MR

Sakhanenko, A.I., ( 1985a), Rate of convergence in the invariance principle for non identically distributed variables with exponential moments. In Advances in probability theory. Limit theorems for sums of random variables (ed. A. A. Borovkov). 2-73. Optimization Software Inc., Publication Division. New York. | Zbl

Sakhanenko, A. I., ( 1985b), Estimates in the invariance principle. Trudy Inst. Mat. Sibirsk. Otdel, Akad. Nauka SSSR, Novosibirsk. 5 27-44. | Zbl | MR

Skorohod, A. V., ( 1976), On a representation of random variables. Theory Probab. Appl. 21 628-632. | Zbl | MR

Tusnády, G., ( 1977), A remark on the approximation of the sample DF in the multidimensional case. Period. Math. Hung. 8 53-55. | Zbl | MR