Voir la notice de l'acte provenant de la source Numdam
@article{PSMIR_1966-1967____A5_0, author = {Gani, J.}, title = {On the {General} {Stochastic} {Epidemic}}, journal = {Publications de l'Institut de recherche math\'ematiques de Rennes}, note = {talk:5}, pages = {1--12}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, year = {1966-1967}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PSMIR_1966-1967____A5_0/} }
TY - JOUR AU - Gani, J. TI - On the General Stochastic Epidemic JO - Publications de l'Institut de recherche mathématiques de Rennes N1 - talk:5 PY - 1966-1967 SP - 1 EP - 12 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://geodesic.mathdoc.fr/item/PSMIR_1966-1967____A5_0/ LA - en ID - PSMIR_1966-1967____A5_0 ER -
%0 Journal Article %A Gani, J. %T On the General Stochastic Epidemic %J Publications de l'Institut de recherche mathématiques de Rennes %Z talk:5 %D 1966-1967 %P 1-12 %I Département de Mathématiques et Informatique, Université de Rennes %U http://geodesic.mathdoc.fr/item/PSMIR_1966-1967____A5_0/ %G en %F PSMIR_1966-1967____A5_0
Gani, J. On the General Stochastic Epidemic. Publications de l'Institut de recherche mathématiques de Rennes, Séminaires de probabilités et statistiques (1966-1967), Exposé no. 5, 12 p. http://geodesic.mathdoc.fr/item/PSMIR_1966-1967____A5_0/
The total size of a general stochastic epidemic. Biometrika 40, 177-185. | Zbl | MR
(1953)The mathematical theory of epidemics. Griffin, London. | MR
(1957)Some evoluticnary stochastic processes. J.R. Statist. Soc. B II, 211 - 229. | Zbl | MR
(1949)A note on Bailey's and Whittle's treatment of a general stochastic epidemic. Biometrika 42, 123 - 125. | Zbl | MR
(1955)On a partial differential equation of epidemic theory. I. Biometrika 52. | Zbl | MR
(1965a)On a partial differential equation of epidemic theory II. The model with immigration. Office of Naval Research Technical Report RM-124 at Michigan State University.
(1965b)Deterministic and stochastic epidemics in closed populations. Proc. 3rd Berkeley Symp. on Math. Statist, and Prob. 4 149 - 165. U. of California, Berkeley. | Zbl | MR
(1956)A solution of the general stochastic epidemic. Biometrika 52. | Zbl | MR
(1965)The outcome of a stochastic epidemic - A note on Bailey's paper. Biometrika 42, 116 - 122. | Zbl | MR
(1955)