On a class of second order ODE with a typical degenerate nonlinearity.
Portugaliae mathematica, Tome 58 (2001) no. 2, pp. 233-254.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Keywords: nonlinear second-order equation, classical global solutions
@article{PORMA_2001__58_2_49223,
     author = {Haraux, A. and Yan, Q.},
     title = {On a class of second order {ODE} with a typical degenerate nonlinearity.},
     journal = {Portugaliae mathematica},
     pages = {233--254},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2001},
     zbl = {0987.34004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PORMA_2001__58_2_49223/}
}
TY  - JOUR
AU  - Haraux, A.
AU  - Yan, Q.
TI  - On a class of second order ODE with a typical degenerate nonlinearity.
JO  - Portugaliae mathematica
PY  - 2001
SP  - 233
EP  - 254
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PORMA_2001__58_2_49223/
LA  - en
ID  - PORMA_2001__58_2_49223
ER  - 
%0 Journal Article
%A Haraux, A.
%A Yan, Q.
%T On a class of second order ODE with a typical degenerate nonlinearity.
%J Portugaliae mathematica
%D 2001
%P 233-254
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PORMA_2001__58_2_49223/
%G en
%F PORMA_2001__58_2_49223
Haraux, A.; Yan, Q. On a class of second order ODE with a typical degenerate nonlinearity.. Portugaliae mathematica, Tome 58 (2001) no. 2, pp. 233-254. http://geodesic.mathdoc.fr/item/PORMA_2001__58_2_49223/