How many intervals cover a point in random dyadic covering?
Portugaliae mathematica, Tome 58 (2001) no. 1, pp. 59-75.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Keywords: Random covering, Hausdorff dimension, Indexed martingale, Peyrière measure.
@article{PORMA_2001__58_1_50657,
     author = {Fan, Aihua and Kahane, J. P.},
     title = {How many intervals cover a point in random dyadic covering?},
     journal = {Portugaliae mathematica},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2001},
     zbl = {1033.52004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PORMA_2001__58_1_50657/}
}
TY  - JOUR
AU  - Fan, Aihua
AU  - Kahane, J. P.
TI  - How many intervals cover a point in random dyadic covering?
JO  - Portugaliae mathematica
PY  - 2001
SP  - 59
EP  - 75
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PORMA_2001__58_1_50657/
LA  - en
ID  - PORMA_2001__58_1_50657
ER  - 
%0 Journal Article
%A Fan, Aihua
%A Kahane, J. P.
%T How many intervals cover a point in random dyadic covering?
%J Portugaliae mathematica
%D 2001
%P 59-75
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PORMA_2001__58_1_50657/
%G en
%F PORMA_2001__58_1_50657
Fan, Aihua; Kahane, J. P. How many intervals cover a point in random dyadic covering?. Portugaliae mathematica, Tome 58 (2001) no. 1, pp. 59-75. http://geodesic.mathdoc.fr/item/PORMA_2001__58_1_50657/