Are most measurable functions one-to-one?
Portugaliae mathematica, Tome 49 (1992) no. 4, pp. 429-446.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Keywords: meagre set, residual set, injective function, topology of close approximation, uniform topology, convergence in measure, Baire space, first category
@article{PORMA_1992__49_4_115800,
     author = {van Douwen, E.K. and Stone, A.H.},
     title = {Are most measurable functions one-to-one?},
     journal = {Portugaliae mathematica},
     pages = {429--446},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {1992},
     mrnumber = {1300577},
     zbl = {0801.54012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PORMA_1992__49_4_115800/}
}
TY  - JOUR
AU  - van Douwen, E.K.
AU  - Stone, A.H.
TI  - Are most measurable functions one-to-one?
JO  - Portugaliae mathematica
PY  - 1992
SP  - 429
EP  - 446
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PORMA_1992__49_4_115800/
LA  - en
ID  - PORMA_1992__49_4_115800
ER  - 
%0 Journal Article
%A van Douwen, E.K.
%A Stone, A.H.
%T Are most measurable functions one-to-one?
%J Portugaliae mathematica
%D 1992
%P 429-446
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PORMA_1992__49_4_115800/
%G en
%F PORMA_1992__49_4_115800
van Douwen, E.K.; Stone, A.H. Are most measurable functions one-to-one?. Portugaliae mathematica, Tome 49 (1992) no. 4, pp. 429-446. http://geodesic.mathdoc.fr/item/PORMA_1992__49_4_115800/