The number of eigenvalues greater than two in the Laplacian spectrum of a graph
Portugaliae mathematica, Tome 48 (1991) no. 3, pp. 345-349
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Keywords:
Laplacian matrix, diagonal matrix of vertex degrees, adjacency matrix, number of pendant neighbours, eigenvalues
@article{PORMA_1991__48_3_115760,
author = {Merris, Russell},
title = {The number of eigenvalues greater than two in the {Laplacian} spectrum of a graph},
journal = {Portugaliae mathematica},
pages = {345--349},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {1991},
mrnumber = {1127131},
zbl = {0731.05037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PORMA_1991__48_3_115760/}
}
TY - JOUR AU - Merris, Russell TI - The number of eigenvalues greater than two in the Laplacian spectrum of a graph JO - Portugaliae mathematica PY - 1991 SP - 345 EP - 349 VL - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PORMA_1991__48_3_115760/ LA - en ID - PORMA_1991__48_3_115760 ER -
Merris, Russell. The number of eigenvalues greater than two in the Laplacian spectrum of a graph. Portugaliae mathematica, Tome 48 (1991) no. 3, pp. 345-349. http://geodesic.mathdoc.fr/item/PORMA_1991__48_3_115760/