On the stability of the free boundary in the obstacle problem for a minimal surface
Portugaliae mathematica, Tome 41 (1982) no. 1-4, pp. 463-480.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Keywords: stability of the coincidence set, quasilinear variational inequalities
@article{PORMA_1982__41_1-4_115515,
     author = {Rodrigues, Jos\'e Francisco},
     title = {On the stability of the free boundary in the obstacle problem for a minimal surface},
     journal = {Portugaliae mathematica},
     pages = {463--480},
     publisher = {mathdoc},
     volume = {41},
     number = {1-4},
     year = {1982},
     mrnumber = {0766871},
     zbl = {0554.49002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PORMA_1982__41_1-4_115515/}
}
TY  - JOUR
AU  - Rodrigues, José Francisco
TI  - On the stability of the free boundary in the obstacle problem for a minimal surface
JO  - Portugaliae mathematica
PY  - 1982
SP  - 463
EP  - 480
VL  - 41
IS  - 1-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PORMA_1982__41_1-4_115515/
LA  - en
ID  - PORMA_1982__41_1-4_115515
ER  - 
%0 Journal Article
%A Rodrigues, José Francisco
%T On the stability of the free boundary in the obstacle problem for a minimal surface
%J Portugaliae mathematica
%D 1982
%P 463-480
%V 41
%N 1-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PORMA_1982__41_1-4_115515/
%G en
%F PORMA_1982__41_1-4_115515
Rodrigues, José Francisco. On the stability of the free boundary in the obstacle problem for a minimal surface. Portugaliae mathematica, Tome 41 (1982) no. 1-4, pp. 463-480. http://geodesic.mathdoc.fr/item/PORMA_1982__41_1-4_115515/